Question	Answer	Marks	Guidance
1	Vertical component of velocity $=25-4 g$	M1	Use $v=u+a t$
	$v^{2}=18^{2}+(25-4 g)^{2}$ or $\tan \theta=\frac{(25-4 g)}{18}$	M1	
	$v=23.4 \mathrm{~ms}^{-1}$	A1	
	$\theta=39.8^{\circ}$ below the horizontal	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2		M1	Attempt to take moments about A
	$8 x \cos 30=0.5 \times 12 \sin 30$	A1	Correct equation
	$x=0.433 \mathrm{~m}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3(i)	$0.4 \frac{\mathrm{~d} \nu}{\mathrm{~d} t}=0.8 t-2 e^{-t}$	M1	Use Newton's Second Law horizontally
	$\frac{\mathrm{d} v}{\mathrm{~d} t}=2 \mathrm{t}-5 e^{-t}$	A1	AG
		2	
3(ii)	$\begin{aligned} & \int d v=\int\left(2 t-5 e^{-t}\right) \mathrm{dt} \\ & v=t^{2}+5 e^{-t}(+\mathrm{c}) \end{aligned}$	M1	Attempt to integrate the equation from part (i)
	$t=1$ and $v=8$ so $\mathrm{c}=5.16$	M1	Attempt to find the constant of integration, c
	$v=t^{2}+5 e^{-t}+5.16$ or $v=t^{2}+5 e^{-t}+7-5 e^{-1}$	A1	
		3	
3(iii)	Evaluates v for $t=0$	M1	
	$V=10.2 \mathrm{~ms}^{-1}$	A1	
		2	

Question	Answer	Marks	Guidance
4(i)	$x=(V \cos 45) t$	B1	Use horizontal motion
	$y=(V \sin 45) t-\frac{g t^{2}}{2}$	B1	Use $s=u t+\frac{1}{2} g t^{2}$ vertically
	$y=\frac{(V \sin 45) x}{(V \cos 45)}-\frac{1}{2} g\left(\frac{x}{V \cos 45}\right)^{2}$	M1	Attempt to eliminate t
	$y=x-\frac{10 x^{2}}{V^{2}}$	A1	
		4	
4(ii)	$18=24-\frac{10 \times 24^{2}}{V^{2}}$	M1	Substitutes $x=18, y=24$ in part (i) equation
	$V=31(.0)$	A1	
		2	
4(iii)	$22.5=x-\frac{10 x^{2}}{960}$	M1	Put $y=22.5$ in part (i)
	$x^{2}-96 x+2160=0$	M1	Attempt to solve a quadratic equation
	$x=36,60$	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	$1.8=\frac{20 e^{2}}{(2 \times 0.5)}$	M1	Use $T=\frac{\lambda x}{l}$
	$e=0.3, \mathrm{OA}=0.8$	A1	
		2	
5(ii)	$0.7 g \sin 30=\frac{20 x}{0.5}$	M1	Use Newton's Second Law up the plane
	$x=0.0875 \mathrm{~m}$	A1	
	$\mathrm{EPE}=\frac{20 \times 0.0875^{2}}{(2 \times 0.5)}$	B1	
	$\frac{0.7 v^{2}}{2}=1.8+1.8-0.7 g(0.3-0.0875) \sin 30-\frac{20 \times 0.0875^{2}}{(2 \times 0.5)}$	M1	Attempt to set up a 5 term energy equation
		A1	Correct equation
	$v=2.78 \mathrm{~ms}^{-1}$	A1	
		6	

Question	Answer	Marks	Guidance
6(i)	$r[=0.6-(0.4-0.3)]=0.5$	B1	
	$T=0.3 \mathrm{~g}$	B1	Resolve vertically for Q
	$0.2 v^{2} / 0.5=0.3 g$	M1	Use Newton's Second Law horizontally for P
	$v=2.74 \mathrm{~ms}^{-1}$	A1	
		4	
6 (ii)	$r=0.5+e$	B1	$e=$ extension of the string
	$T=\frac{15 e}{0.3}=50 e$	B1	Use $T=\lambda \mathrm{x} / \mathrm{l}$
	$0.2 \times 8^{2}(5+e)=50 e+0.3 \mathrm{~g}$	M1	Use Newton's Second Law horizontally with $a=r \omega^{2}$
	$e=\frac{(6.4-3)}{(50-12.8)}(=0.0914)$	A1	
	$\mathrm{HP}=0.591 \mathrm{~m}$	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	Height of conical tip $=1.2 \times \frac{0.2}{0.5}=0.48$	M1	Use ratio of corresponding sides, similar figures
	Cylindrical height $=1.2-0.48=0.72$	A1	AG
	$\begin{aligned} & \text { Volume removed }=\pi 0.2^{2} \times \frac{0.48}{3}+\pi 0.2^{2} \times 0.72 \\ & (=0.0064 \pi+0.0288 \pi) \end{aligned}$	M1	
	Volume removed $=0.0352 \pi$	A1	AG
		4	
7(ii)	Moment of cone removed about the base $=0.0064 \pi\left(0.72+\frac{0.48}{4}\right)=0.0064 \pi \times 0.84$	B1	
	Moment of cylinder removed about the base $=0.0288 \pi \times \frac{0.72}{2}=0.0288 \pi \times 0.36$	B1	
	Moment of the original cone about the base $=\pi 0.5^{2} \times \frac{1.2}{3} \times 0.3=0.1 \pi \times 0.3$	B1	
		M1	Attempt to take moments about the base
	$\begin{aligned} & 0.1 \pi \times 0.3=0.0064 \pi \times 0.84+0.0288 \pi \times 0.36+ \\ & 0.0648 \pi x \end{aligned}$	A1	Note 0.0648π is the volume of the object
	$x=0.22 \mathrm{~m}$	A1	
		6	

