Question	Answer	Marks	Guidance
1(i)	$0.4\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	B1	
	Total:	1	
1(ii)	$\left[9040=\frac{1}{2}(600+T) \times 16\right]$	M1	Equating area of the trapezium to the total distance or using $s=1 / 2(u+v) t$ or equivalent
	Time is 530 (s)	A1	
	Total:	2	
1(iii)	$\left[s=\frac{1}{2} \times(600-530-40) \times 16\right]$	M1	Use of triangular area, or equivalent
	Distance is 240 (m)	A1	
	Total:	2	

Question	Answer			Marks	Guidance
2	$\left[V^{2}=5^{2}+2 \times g \times 7.2\right]$			M1	Use of uvast to find V
	$V=13$			A1	
	$[13=5+g t \quad t=\ldots .$.	0.8 (s)		M1	Use of uvast to find time for A to reach ground
	$[0=6.5-g t \quad t=\ldots .$.	0.65 (s)		M1	Use of uvast to find time from ground to B
	Total time is 1.45 (s)			A1	
			Total:	5	

Question	Answer	Marks	Guidance
3		M1	For resolving forces in any one direction
	E.g. $X=18+12 \sin 60^{\circ}-8 \sin 30^{\circ} \quad 14+6 \sqrt{ } 3$	A1	One correct equation or expression
	E.g. $Y=8 \cos 30^{\circ}+12 \cos 60^{\circ} \quad 6+4 \sqrt{ } 3$	A1	Second correct equation or expression (X and Y may denote components of resultant of given 3 forces or may be components of the fourth force that would produce equilibrium)
	$\left[(14+6 \sqrt{ } 3)^{2}+(6+4 \sqrt{ } 3)^{2}\right]$ or $\left[\tan ^{-1}(6+4 \sqrt{ } 3) /(14+6 \sqrt{ } 3)\right]$	M1	Use of Pythagoras or appropriate trig to find magnitude or angle
	Magnitude is 27.6 (N)	A1	Not for resultant
	Direction is 27.9° below 'negative x-axis'	A1	Not for 27.9° only; direction must be clearly specified
	Total:	6	

Question	Answer	Marks	Guidance
4	$\left[\frac{1}{2} \times 0.8 \times v^{2}\right]$ or $\left[\frac{1}{2} \times 1.6 \times v^{2}\right]$	M1	For KE of either particle
	Gain in $\mathrm{KE}=\frac{1}{2} \times 0.8 \times v^{2}+\frac{1}{2} \times 1.6 \times v^{2}$	A1	Total KE
	[Gain in $\mathrm{PE}_{A}=0.8 g \times 0.5 \times \sin \theta$] or [Loss in $\mathrm{PE}_{B}=1.6 g \times 0.5$]	M1	For PE change of either particle (irrespective of sign)
	Loss in PE $=1.6 \mathrm{~g} \times 0.5-0.8 \mathrm{~g} \times 0.5 \times 0.6$	A1	Change of PE
	$\left[1.2 v^{2}=8-2.4\right]$	M1	Energy equation originating from 4 terms
	Speed is $2.16\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	
	Total:	6	
			SC for using Newton II equations and $v^{2}=u^{2}+2 a s(\boldsymbol{m a x} 2 / 6)$ $[16-T=1.6 a$ and $T-8 \sin \theta=0.8 a] \rightarrow a=4.67\left(\mathrm{~ms}^{-2}\right) \quad$ B1 $\left[v^{2}=2 \times \frac{14}{3} \times 0.5\right] \rightarrow$ speed is $2.16\left(\mathrm{~ms}^{-1}\right)$ B1
			Alternative method 1 for Question 4
	$\left[\frac{1}{2} \times 0.8 \times v^{2}\right]$ or $[0.8 g \times 0.5 \times \sin \theta]$	M1	For KE gain or PE gain of particle A
	$\frac{1}{2} \times 0.8 \times v^{2}+0.8 g \times 0.5 \times 0.6$	A1	Total energy gain for particle A
	$[16-T=1.6 a$ and $T-8 \sin \theta=0.8 a \rightarrow T=\ldots]$.	M1	Forms and solves Newton II equations to find tension T
	$\mathrm{WD}_{T}=\frac{128}{15} \times 0.5$	A1	Finds $\mathrm{WD}_{\text {Tension }}$
	$\left[\frac{1}{2} \times 0.8 \times v^{2}+0.8 g \times 0.5 \times 0.6=\frac{128}{15} \times 0.5\right]$	M1	Energy equation (3 terms)

Question	Answer	Marks	Guidance
4	Speed is $2.16\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	
	Total:	6	
			Alternative method 2 for Question 4
	$\left[\frac{1}{2} \times 1.6 \times v^{2}\right]$ or $[1.6 \mathrm{~g} \times 0.5]$	M1	For KE gain or PE loss of particle B
	$1.6 \mathrm{~g} \times 0.5-\frac{1}{2} \times 1.6 \times v^{2}$	A1	Energy change for particle B
	$[16-T=1.6 a$ and $T-8 \sin \theta=0.8 a \rightarrow T=\ldots]$.	M1	Forms and solves Newton II equations to find tension T
	$\mathrm{WD}_{T}=\frac{128}{15} \times 0.5$	A1	Finds $\mathrm{WD}_{\text {Tension }}$
	$\left.1.6 g \times 0.5-\frac{1}{2} \times 1.6 \times v^{2}=\frac{128}{15} \times 0.5\right]$	M1	Energy equation (3 terms)
	Speed is $2.16\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	
	Total:	6	

Question	Answer	Marks	Guidance
5	$R=3 g \cos 20^{\circ}$	$\mathbf{B 1}$	Correct normal reaction stated or used
	$\left[F=0.35 \times 3 g \cos 20^{\circ}\right]$	$\mathbf{M 1}$	For use of $F=\mu R$
	$\left[P_{1}+F=3 g \sin 20^{\circ}\right]$	$\mathbf{M 1}$	Attempted resolving equation for minimum case
	$P_{1}=0.394(\mathbf{A G})$	$\mathbf{A 1}$	Correct given answer from correct work
	$\left[P_{2}=F+3 g \sin 20^{\circ}\right]$	A1	Attempted resolving equation for maximum case
	$P_{2}=20.1(\mathrm{~N})$	Total:	$\mathbf{6}$

Question	Answer	Marks	Guidance
6 (i)	$\left[\frac{P}{56}=40 \times 56\right]$	M1	For equating $\frac{\text { Power }}{\text { Velocity }}$ to Resistance, or equivalent
	Power is $125(\mathrm{~kW})$	A1	
	Total:	2	
6(ii)	Driving force is $\frac{125440}{32}$	B1ft	Follow through their power from (i)
	$\left[\frac{125440}{32}-40 \times 32=1400 a\right]$	M1	For 3-term Newton II equation
	$a=1.89\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
6(iii)	$\left[\frac{60000}{50}+1400 g \sin \theta-40 \times 50=0\right]$	M1	For 3-term Newton II equation
		A1	Correct equation
	$\left[\sin \theta^{\circ}=\frac{800}{14000}\right]$	M1	
	$\theta=3.3$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
7(i)	$\left[\frac{\mathrm{d} v}{\mathrm{~d} t}=12-8 t\right]$ or e.g. $\left[-4\left[(t-1.5)^{2}-2.25\right]\right]$	M1	For attempted differentiation of $12 t-4 t^{2}$ (or for alternative e.g. completing the square)
	[Maximum v when $t=1.5 \Rightarrow v=12 \times 1.5-4 \times 1.5^{2}$]	M1	For finding and using t
	Maximum velocity is $9\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	
	Total:	3	
7(ii)	$\left[\frac{\mathrm{d} v}{\mathrm{~d} t}=12-8 t=-4\right]$	M1	Finding acceleration for $0 \leqslant t \leqslant 2$ when $\mathrm{t}=2$
	Acceleration for $2 \leqslant t \leqslant 4$ is -4 No instantaneous change	A1	Both values correct, with correct statement
	Total:	2	

Question	Answer	Marks	Guidance
7(iii)		B1	Quadratic shape (with max) for $0 \leqslant t \leqslant 2$
		B1	Line with negative gradient from $(2, \ldots)$ to $(4,0)$
		B1	All correct, smooth join and key values indicated
	Total:	3	
7(iv)	Area of triangle is 8	B1	(May be obtained by integrating $16-4 t$ or use of u vast)
	$\left[\int\left(12 t-4 t^{2}\right) \mathrm{d} t=6 t^{2}-\frac{4}{3} t^{3}\right]$	M1	Integration attempt for $0 \leqslant t \leqslant 2$
	$\left[6 \times 2^{2}-\frac{4}{3} \times 2^{3}-6 \times 0^{2}+\frac{4}{3} \times 0^{3}\right]$	DM1	Use of limits 0 and 2; condone absence of zero terms
	Area under curve is $\frac{40}{3}$ or 13.3	A1	
	Distance travelled is $\frac{64}{3}(\mathrm{~m})$ or $21.3(\mathrm{~m})$	A1	
	Total:	5	

