9709/43

Question	Answer	Marks	Guidance
1(i)	$0.4 \text{ (m s}^{-2})$	B1	
	Total:	1	
1(ii)	$[9040 = \frac{1}{2}(600 + T) \times 16]$	M1	Equating area of the trapezium to the total distance or using $s = \frac{1}{2} (u + v)t$ or equivalent
	Time is 530 (s)	A1	
	Total:	2	
1(iii)	$[s = \frac{1}{2} \times (600 - 530 - 40) \times 16]$	M1	Use of triangular area, or equivalent
	Distance is 240 (m)	A1	
	Total:	2	

Question	Answer	Marks	Guidance
2	$[V^2 = 5^2 + 2 \times g \times 7.2]$	M1	Use of <i>uvast</i> to find <i>V</i>
	<i>V</i> = 13	A1	
	$[13 = 5 + gt t = \dots]$ 0.8 (s)	M1	Use of <i>uvast</i> to find time for A to reach ground
	$[0 = 6.5 - gt t = \dots]$ 0.65 (s)	M1	Use of <i>uvast</i> to find time from ground to B
	Total time is 1.45 (s)	A1	
	Total:	5	

Question	Answer	Marks	Guidance
3		M1	For resolving forces in any one direction
	E.g. $X = 18 + 12\sin 60^\circ - 8\sin 30^\circ$ $14 + 6\sqrt{3}$	A1	One correct equation or expression
	E.g. $Y = 8\cos 30^\circ + 12\cos 60^\circ$ $6 + 4\sqrt{3}$	A1	Second correct equation or expression (<i>X</i> and <i>Y</i> may denote components of resultant of given 3 forces or may be components of the fourth force that would produce equilibrium)
	$[(14+6\sqrt{3})^2+(6+4\sqrt{3})^2]$ or $[\tan^{-1}(6+4\sqrt{3})/(14+6\sqrt{3})]$	M1	Use of Pythagoras or appropriate trig to find magnitude or angle
	Magnitude is 27.6 (N)	A1	Not for resultant
	Direction is 27.9° below 'negative <i>x</i> -axis'	A1	Not for 27.9° only; direction must be clearly specified
	Total:	6	

Question	Answer	Marks	Guidance
4	$\left[\frac{1}{2} \times 0.8 \times v^2\right]$ or $\left[\frac{1}{2} \times 1.6 \times v^2\right]$	M1	For KE of either particle
	Gain in KE $= \frac{1}{2} \times 0.8 \times v^2 + \frac{1}{2} \times 1.6 \times v^2$	A1	Total KE
	[Gain in $PE_A = 0.8 g \times 0.5 \times \sin\theta$] or [Loss in $PE_B = 1.6 g \times 0.5$]	M1	For PE change of either particle (irrespective of sign)
	Loss in PE = $1.6 g \times 0.5 - 0.8 g \times 0.5 \times 0.6$	A1	Change of PE
	$[1.2v^2 = 8 - 2.4]$	M1	Energy equation originating from 4 terms
	Speed is 2.16 (m s ⁻¹)	A1	
	Total:	6	
			SC for using Newton II equations and $v^2 = u^2 + 2as \text{ (max 2/6)}$ $[16 - T = 1.6a \text{ and } T - 8\sin\theta = 0.8a] \rightarrow a = 4.67 \text{ (ms}^{-2})$ B1 $[v^2 = 2 \times \frac{14}{3} \times 0.5] \rightarrow \text{speed is } 2.16 \text{ (ms}^{-1})$ B1
			Alternative method 1 for Question 4
	$\left[\frac{1}{2} \times 0.8 \times v^2\right]$ or $\left[0.8 g \times 0.5 \times \sin\theta\right]$	M1	For KE gain or PE gain of particle A
	$\frac{1}{2} \times 0.8 \times v^2 + 0.8 g \times 0.5 \times 0.6$	A1	Total energy gain for particle A
	$[16 - T = 1.6a \text{ and } T - 8\sin\theta = 0.8a \rightarrow T =] 8.53$	M1	Forms and solves Newton II equations to find tension T
	$WD_T = \frac{128}{15} \times 0.5$	A1	Finds WD _{Tension}
	$\left[\frac{1}{2} \times 0.8 \times v^2 + 0.8 g \times 0.5 \times 0.6 = \frac{128}{15} \times 0.5\right]$	M1	Energy equation (3 terms)

9709/43

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

<u>9709_s18_ms_</u>43

Question	Answer	Marks	Guidance
4	Speed is $2.16 ({\rm m \ s}^{-1})$	A1	
	Total:	6	
			Alternative method 2 for Question 4
	$\left[\frac{1}{2} \times 1.6 \times v^2\right]$ or $\left[1.6 g \times 0.5\right]$	M1	For KE gain or PE loss of particle <i>B</i>
	$1.6 g \times 0.5 - \frac{1}{2} \times 1.6 \times v^2$	A1	Energy change for particle <i>B</i>
	$[16 - T = 1.6a \text{ and } T - 8\sin\theta = 0.8a \rightarrow T =]$ 8.53	M1	Forms and solves Newton II equations to find tension T
	$WD_T = \frac{128}{15} \times 0.5$	A1	Finds WD _{Tension}
	$1.6 g \times 0.5 - \frac{1}{2} \times 1.6 \times v^2 = \frac{128}{15} \times 0.5]$	M1	Energy equation (3 terms)
	Speed is $2.16 (\mathrm{m \ s^{-1}})$	A1	
	Total:	6	

9709_s18_ms_43

Question	Answer	Marks	Guidance
5	$R = 3g\cos 20^{\circ}$	B1	Correct normal reaction stated or used
	$[F = 0.35 \times 3g \cos 20^\circ]$	M1	For use of $F = \mu R$
	$[P_1 + F = 3g\sin 20^\circ]$	M1	Attempted resolving equation for minimum case
	$P_1 = 0.394$ (AG)	A1	Correct given answer from correct work
	$[P_2 = F + 3g\sin 20^\circ]$	M1	Attempted resolving equation for maximum case
	$P_2 = 20.1 (\mathrm{N})$	A1	
	Total:	6	

Question	Answer	Marks	Guidance
6(i)	$\left[\frac{P}{56} = 40 \times 56\right]$	M1	For equating $\frac{Power}{Velocity}$ to Resistance, or equivalent
	Power is 125 (kW)	A1	
	Total:	2	
6(ii)	Driving force is $\frac{125440}{32}$	B1ft	Follow through their power from (i)
	$\left[\frac{125440}{32} - 40 \times 32 = 1400a\right]$	M1	For 3-term Newton II equation
	$a = 1.89 (\mathrm{m s^{-2}})$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
6(iii)	$\left[\frac{60000}{50} + 1400g\sin\theta - 40 \times 50 = 0\right]$	M1	For 3-term Newton II equation
		A1	Correct equation
	$\left[\sin\theta^\circ = \frac{800}{14000}\right]$	M1	
	$\theta = 3.3$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
7(i)	$\left[\frac{dv}{dt} = 12 - 8t\right]$ or e.g. $\left[-4\left[(t - 1.5)^2 - 2.25\right]\right]$	M1	For attempted differentiation of $12t - 4t^2$ (or for alternative e.g. completing the square)
	[Maximum v when $t = 1.5 \Rightarrow v = 12 \times 1.5 - 4 \times 1.5^2$]	M1	For finding and using <i>t</i>
	Maximum velocity is $9 \text{ (m s}^{-1})$	A1	
	Total:	3	
7(ii)	$\left[\frac{\mathrm{d}v}{\mathrm{d}t} = 12 - 8t = -4\right]$	M1	Finding acceleration for $0 \le t \le 2$ when $t = 2$
	Acceleration for $2 \le t \le 4$ is -4 No instantaneous change	A1	Both values correct, with correct statement
	Total:	2	

9709/43

Cambridge International AS/A Level – Mark Scheme PUBLISHED

9709_s18_ms_43

Question	Answer	Marks	Guidance
7(iii)	v (m s ⁻¹)	B1	Quadratic shape (with max) for $0 \le t \le 2$
		B1	Line with negative gradient from $(2,)$ to $(4,0)$
	0 1.5 2 4 r(s)	B1	All correct, smooth join and key values indicated
	Total:	3	
7(iv)	Area of triangle is 8	B1	(May be obtained by integrating $16 - 4t$ or use of <i>uvast</i>)
	$\left[\int (12t - 4t^2) \mathrm{d}t = 6t^2 - \frac{4}{3}t^3 \right]$	M1	Integration attempt for $0 \le t \le 2$
	$\left[6 \times 2^{2} - \frac{4}{3} \times 2^{3} - 6 \times 0^{2} + \frac{4}{3} \times 0^{3}\right]$	DM1	Use of limits 0 and 2; condone absence of zero terms
	Area under curve is $\frac{40}{3}$ or 13.3	A1	
	Distance travelled is $\frac{64}{3}$ (m) or 21.3 (m)	A1	
	Total:	5	