Question	Answer	Marks	
1	KE gain $=\frac{1}{2} \times 80 \times\left(5.5^{2}-4^{2}\right)[=570]$	B1	Either initial or final KE correct
	WD against Res $=60 P$	B1	
	$\left[\frac{1}{2} \times 80 \times\left(5.5^{2}-4^{2}\right)+60 P=1200\right]$	M1	Four term work-energy equation
	$P=10.5$	A1	
		$\mathbf{4}$	

Question	Answer	Marks	
2	Driving force $\mathrm{DF}=\frac{P}{15}$	B1	Correct use of $P=F v$
	$[\mathrm{DF}-240000 g \sin 4-18000=240000 \times(-0.2)]$	M1	A four-term Newton 2nd law equation
		A1	Correct equation
	Power is $2060000(\mathrm{~W})$	A1	Allow 2060 kW or 2.06 MW
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
3	[$3 \cos 60=2 \cos \theta$]	M1	Attempt to resolve forces horizontally (2 terms)
	$\theta=41.4$	A1	
	$[P=3 \sin 60+2 \sin \theta]$	M1	Attempt to resolve forces vertically (3 terms)
	$P=3.92$	A1	
		4	
	First alternative method for Q3		
	$\frac{P}{\sin (120-\theta)}=\frac{2}{\sin 150}=\frac{3}{\sin (90+\theta)}$	M1	Attempt two terms of Lami's equation which can be used to find θ
	$\theta=41.4$	A1	
		M1	Attempt an equation which can be used to find P
	$P=3.92$	A1	
	Second alternative method for Q3		
	[Triangle with sides $2,3, P$ and angles opposite of $30,90-\theta, 60+\theta$] $\frac{P}{\sin (60+\theta)}=\frac{2}{\sin 30}=\frac{3}{\sin (90-\theta)}$	M1	Attempt two terms from the triangle of forces which can be used to find θ
	$\theta=41.4$	A1	
		M1	Attempt an equation which can be used to find P
	$P=3.92$	A1	

Question	Answer	Marks	Guidance
4(i)	For example $100=4 u+8 a$ or $100=\frac{1}{2}(u+v) \times 4$ or $148=4 v+8 a$ or any equation in two of the variables u, v, w, a	M1	Any relevant use of constant acceleration equations in any two of the variables below a is acceleration u is speed at A v is speed at B w is speed at C
		A1	One correct equation
	For example $248=8 u+32 a$ or two further correct equations in 3 unknowns such as $148=4 v+8 a$ and $v=u+4 a$ or $148=\frac{1}{2}(v+w) \times 4 \text { and } 248=\frac{1}{2}(u+w) \times 8$	A1	A second correct equation in the same two variables or two further correct equations leading to three equations in three of the unknowns u, v, w, a
		M1	Attempt to solve for a or u This must reach $a=\ldots$ or $u=\ldots$
	$a=3$	A1	AG
	$u=19$	B1	
		6	

Question	Answer	Marks	Guidance
4(ii)	$61^{2}=19^{2}+2 \times 3 \times s$	M1	Attempt equation for $s=A D$
	$[s=560 \rightarrow C D=560-248]$	M1	Attempt to find $C D$
	Distance CD is 312	A1	
		3	
	Alternative method for 4(ii)		
	Speed at C is $19+8 \times 3[=43]$	M1	Attempt to find speed at C
	$\left[61^{2}=43^{2}+2 \times 3 \times C D\right]$	M1	Attempt to find $C D$
	Distance CD is 312	A1	

Question	Answer	Marks	Guidance
5	$R=20 g \cos 60[=100]$	B1	
	$F=\mu \times 20 g \cos 60[=100 \mu]$	M1	Use $F=\mu R$
		M1	Resolve along plane in either case
	$\left(P_{\text {max }}=\right) 20 g \sin 60+F$	A1	One correct equation
	$\left(P_{\text {min }}=\right) 20 g \sin 60-F$	A1	Second correct equation
	$20 g \sin 60+F=2(20 g \sin 60-F)$	M1	Use of $P_{\text {max }}=2 P_{\text {min }}$ to give four term equation in F or μ or P
	$\mu=\frac{\sqrt{3}}{3}=0.577$	A1	
		7	
	Iternative solution for final 3 marks if $\boldsymbol{P}_{\text {min }}$ is taken as acting down the plane		
	$P_{\text {min }}=F-20 g \sin 60$	A1	
	$20 g \sin 60+F=2(F-20 g \sin 60)$	M1	
	$\mu=3 \sqrt{3}=5.196$	A1	

Question	Answer	Marks	Guidance
6(i)		M1	Attempt to integrate a
	$v=6 t-0.12 t^{2}(+c)$	A1	
	$0=6 \times 20-0.12 \times 20^{2}+c$	DM1	Substitute $v=0, t=20$ in an equation with arbitrary constant
	$0.12 t^{2}-6 t+72=0$	DM1	Substitute $v=0$ and attempt to solve a 3-term quadratic
	$t=30$	A1	
		5	
6(ii)	$s=3 t^{2}-0.04 t^{3}-72 t(+k)$	M1	Attempt to integrate v
	$s(30)-s(20)=-540-(-560)$	DM1	Use of limits 20 and their 30
	Distance travelled $=20$	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	$[T=1.6 a, 2.4 g \sin 30-T=2.4 a]$ System is $2.4 g \sin 30=4 a$	M1	Attempt Newton's 2nd law for A or B or for the system
		A1	Two correct equations
		M1	Solve for a or T
	$a=3$	A1	
	$T=4.8$	A1	
		5	
7(ii)	Friction force on A is $F=0.2 \times 1.6 \mathrm{~g}[=3.2]$	B1	From $F=\mu R$
	$\begin{aligned} & T-F=1.6 a \\ & 2.4 g \sin 30-T=2.4 a \\ & \text { System is } 2.4 g \sin 30-F=4 a \end{aligned}$	M1	Attempt Newton's $2^{\text {nd }}$ law for both particles or for the system
		A1	Correct equations for A and B or correct system equation
		M1	Attempt to solve for a
	$a=2.2$	A1	
	$v^{2}=2 \times 2.2 \times 1$	M1	Attempt to find v or v^{2} when B reaches the barrier
	Subsequent acceleration of A is -2	B1	
	$4.4=2 \times 2 \times s$	M1	Attempt to find distance A travels while decelerating to $v=0$
	Total distance travelled is 2.1 m	A1	
		9	

Question	Answer	Marks	Guidance
7(ii)	Alternative method for Q7 [Work-Energy applied to \boldsymbol{A} and \boldsymbol{B}]		
	$F=0.2 \times 1.6 \mathrm{~g}[=3.2]$	B1	From $F=\mu R=0.2 \times 1.6 \mathrm{~g}=3.2$
		M1	Attempt PE loss as B reaches the barrier
	PE loss $=2.4 g \sin 30[=12]$	A1	
		M1	Attempt KE gain for both A and B
	$\text { KE gain }=\frac{1}{2}(1.6+2.4) v^{2}\left[=2 v^{2}\right]$	A1	
	$\begin{aligned} & {\left[2.4 g \sin 30=\frac{1}{2} \times 4 \times v^{2}+3.2 \times 1\right]} \\ & {\left[v^{2}=4.4\right]} \end{aligned}$	M1	Apply work-energy equation for the motion until B reaches the barrier (Three relevant terms)
	KE loss $=\frac{1}{2} \times 1.6 \times 4.4$	B1	Find KE loss as A comes to rest after B has stopped
	$\left[\frac{1}{2} \times 1.6 \times 4.4=3.2 d\right]$ $[d=1.1]$	M1	Apply work-energy equation where d is the extra distance travelled by A leading to a positive value for d
	Total distance $=2.1 \mathrm{~m}$	A1	Distance $=d+1$

Question	Answer	Marks	Guidance
7(ii)	Alternative scheme for first 6 marks of 7(ii) [Work-energy applied to A]		
	Friction $=0.2 \times 1.6 \mathrm{~g}[=3.2]$	B1	
	$\begin{aligned} & {[2.4 g \sin 30-T=2.4 a} \\ & T-F=1.6 a] \end{aligned}$	M1	Apply Newton's 2nd law to A and B and solve for T
	$T=6.72$	A1	
	$\left[\frac{1}{2} \times 1.6 \times v^{2}\right]$	M1	Attempt KE for A only
		A1	Correct KE for A
	$\left[6.72 \times 1=\frac{1}{2} \times 1.6 \times v^{2}+3.2 \times 1\right]$	M1	Use work/energy equation for A
	Alternative scheme for first 6 marks of 7(ii) [Work-energy applied to B]		
	Friction $=0.2 \times 1.6 \mathrm{~g}$ [=3.2]	B1	
	$\begin{aligned} & {[2.4 g \sin 30-T=2.4 a} \\ & T-F=1.6 a] \end{aligned}$	M1	Apply Newton's 2nd law to A and B and solve for T
	$T=6.72$	A1	
		M1	Find energy loss/gain for B Allow either term
	$\pm\left(\frac{1}{2} \times 2.4 \times v^{2}-2.4 g \sin 30\right)$	A1	
	$2.4 g \sin 30=\frac{1}{2} \times 2.4 \times v^{2}+6.72 \times 1$	M1	Use work/energy equation for B

