9709/42

Cambridge International AS/A Level – Mark Scheme PUBLISHED

970)9	s1	8	ms	42

Question	Answer	Marks	Guidance
1	KE gain = $\frac{1}{2} \times 80 \times (5.5^2 - 4^2)$ [= 570]	B1	Either initial or final KE correct
	WD against Res = $60P$	B1	
	$\left[\frac{1}{2} \times 80 \times (5.5^2 - 4^2) + 60P = 1200\right]$	M1	Four term work-energy equation
	<i>P</i> = 10.5	A1	
		4	

Question	Answer	Marks	Guidance
2	Driving force DF = $\frac{P}{15}$	B1	Correct use of $P = Fv$
	$\left[\text{DF} - 240\ 000g\sin 4 - 18\ 000 = 240\ 000 \times (-0.2) \right]$	M1	A four-term Newton 2nd law equation
		A1	Correct equation
	Power is 2 060 000 (W)	A1	Allow 2060 kW or 2.06 MW
		4	

9709 s	18 m	າຣ 42
--------	------	-------

Question	Answer	Marks	Guidance
3	$[3\cos 60 = 2\cos \theta]$	M1	Attempt to resolve forces horizontally (2 terms)
	$\theta = 41.4$	A1	
	$[P = 3\sin 60 + 2\sin \theta]$	M1	Attempt to resolve forces vertically (3 terms)
	<i>P</i> = 3.92	A1	
		4	
	First alternative method for Q3		
	$\frac{P}{2} = \frac{2}{3}$	M1	Attempt two terms of Lami's equation which can be used to f_{1}
	$\sin(120-\theta) \sin 150 \sin(90+\theta)$		find θ
	$\theta = 41.4$	A1	
		M1	Attempt an equation which can be used to find <i>P</i>
	<i>P</i> = 3.92	A1	
	Second alternative method for Q3		
	[Triangle with sides 2, 3, P and angles opposite of 30, 90 – θ , 60 + θ] $\frac{P}{\sin(60+\theta)} = \frac{2}{\sin 30} = \frac{3}{\sin(90-\theta)}$	M1	Attempt two terms from the triangle of forces which can be used to find $\boldsymbol{\theta}$
	$\theta = 41.4$	A1	
		M1	Attempt an equation which can be used to find P
	<i>P</i> = 3.92	A1	

May/June 2018

Question	Answer	Marks	Guidance
4(i)	For example $100 = 4u + 8a$ or $100 = \frac{1}{2}(u + v) \times 4$ or $148 = 4v + 8a$ or any equation in two of the variables <i>u</i> , <i>v</i> , <i>w</i> , <i>a</i>	M1	Any relevant use of constant acceleration equations in any two of the variables below <i>a</i> is acceleration <i>u</i> is speed at <i>A</i> <i>v</i> is speed at <i>B</i> <i>w</i> is speed at <i>C</i>
		A1	One correct equation
	For example $248 = 8u + 32a$ or two further correct equations in 3 unknowns such as 148 = 4v + 8a and $v = u + 4aor148 = \frac{1}{2}(v + w) \times 4 and 248 = \frac{1}{2}(u + w) \times 8$	A1	A second correct equation in the same two variables or two further correct equations leading to three equations in three of the unknowns <i>u</i> , <i>v</i> , <i>w</i> , <i>a</i>
		M1	Attempt to solve for <i>a</i> or <i>u</i> This must reach $a = \dots$ or $u = \dots$
	<i>a</i> = 3	A1	AG
	<i>u</i> = 19	B 1	
		6	

9709/42

Cambridge International AS/A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
4(ii)	$61^2 = 19^2 + 2 \times 3 \times s$	M1	Attempt equation for $s = AD$
	$[s = 560 \rightarrow CD = 560 - 248]$	M1	Attempt to find CD
	Distance <i>CD</i> is 312	A1	
		3	
	Alternative method for 4(ii)		
	Speed at <i>C</i> is $19 + 8 \times 3$ [= 43]	M1	Attempt to find speed at C
	$\left[61^2 = 43^2 + 2 \times 3 \times CD\right]$	M1	Attempt to find CD
	Distance <i>CD</i> is 312	A1	

Question	Answer	Marks	Guidance
5	$R = 20g \cos 60 [= 100]$	B 1	
	$F = \mu \times 20g \cos 60 \ [= 100\mu]$	M1	Use $F = \mu R$
		M1	Resolve along plane in either case
	$(P_{\rm max} =) 20g \sin 60 + F$	A1	One correct equation
	$(P_{\min} =) 20g \sin 60 - F$	A1	Second correct equation
	$20g\sin 60 + F = 2(20g\sin 60 - F)$	M1	Use of $P_{\text{max}} = 2P_{\text{min}}$ to give four term equation in <i>F</i> or μ or <i>P</i>
	$\mu = \frac{\sqrt{3}}{3} = 0.577$	A1	
		7	
	lternative solution for final 3 marks if a	P _{min} is take	n as acting down the plane
	$P_{\min} = F - 20g \sin 60$	A1	
	$20g\sin 60 + F = 2(F - 20g\sin 60)$	M1	
	$\mu = 3\sqrt{3} = 5.196$	A1	

Question	Answer	Marks	Guidance
6(i)		M1	Attempt to integrate a
	$v = 6t - 0.12t^2 (+ c)$	A1	
	$0 = 6 \times 20 - 0.12 \times 20^2 + c$	DM1	Substitute $v = 0$, $t = 20$ in an equation with arbitrary constant
	$0.12t^2 - 6t + 72 = 0$	DM1	Substitute $v = 0$ and attempt to solve a 3-term quadratic
	t = 30	A1	
		5	
6(ii)	$s = 3t^2 - 0.04t^3 - 72t \ (+k)$	M1	Attempt to integrate v
	s(30) - s(20) = -540 - (-560)	DM1	Use of limits 20 and their 30
	Distance travelled = 20	A1	
		3	

97	09	s18	ms	42
		_		

Question	Answer	Marks	Guidance
7(i)	$[T = 1.6a, 2.4g \sin 30 - T = 2.4a]$ System is 2.4g sin 30 = 4a	M1	Attempt Newton's 2nd law for <i>A</i> or <i>B</i> or for the system
		A1	Two correct equations
		M1	Solve for <i>a</i> or <i>T</i>
	<i>a</i> = 3	A1	
	T = 4.8	A1	
		5	
7(ii)	Friction force on A is $F = 0.2 \times 1.6g [= 3.2]$	B1	From $F = \mu R$
	T - F = 1.6a 2.4g sin 30 - T = 2.4a System is 2.4g sin 30 - F = 4a	M1	Attempt Newton's 2 nd law for both particles or for the system
		A1	Correct equations for A and B or correct system equation
		M1	Attempt to solve for <i>a</i>
	a = 2.2	A1	
	$v^2 = 2 \times 2.2 \times 1$	M1	Attempt to find <i>v</i> or v^2 when <i>B</i> reaches the barrier
	Subsequent acceleration of A is -2	B1	
	$4.4 = 2 \times 2 \times s$	M1	Attempt to find distance A travels while decelerating to $v = 0$
	Total distance travelled is 2.1 m	A1	
		9	

May/June 2018

Question	Answer Marks Guidance				
7(ii)	Alternative method for Q7 [Work-Energy applied to A and B]				
	$F = 0.2 \times 1.6g [= 3.2]$	B1	From $F = \mu R = 0.2 \times 1.6g = 3.2$		
		M1	Attempt PE loss as <i>B</i> reaches the barrier		
	PE loss = $2.4g \sin 30$ [= 12]	A1			
		M1	Attempt KE gain for both A and B		
	KE gain = $\frac{1}{2}(1.6 + 2.4)v^2$ [= $2v^2$]	A1			
	$[2.4g \sin 30 = \frac{1}{2} \times 4 \times v^{2} + 3.2 \times 1]$ $[v^{2} = 4.4]$	M1	Apply work-energy equation for the motion until <i>B</i> reaches the barrier (Three relevant terms)		
	$\text{KE loss} = \frac{1}{2} \times 1.6 \times 4.4$	B1	Find KE loss as A comes to rest after B has stopped		
	$[\frac{1}{2} \times 1.6 \times 4.4 = 3.2d]$	M1	Apply work-energy equation where d is the extra distance travelled by A leading to a positive value for d		
	[d = 1.1]				
	Total distance = $2.1 \mathrm{m}$	A1	Distance = $d + 1$		

May/June 2018

Question	Answer	Marks	Guidance
7(ii)	Alternative scheme for first 6 marks of 7(ii) [Work-energy applied to A]		
	Friction = $0.2 \times 1.6g$ [= 3.2]	B1	
	$[2.4g \sin 30 - T = 2.4a T - F = 1.6a]$	M1	Apply Newton's 2nd law to A and B and solve for T
	T = 6.72	A1	
	$\left[\frac{1}{2} \times 1.6 \times v^2\right]$	M1	Attempt KE for A only
		A1	Correct KE for A
	$[6.72 \times 1 = \frac{1}{2} \times 1.6 \times v^2 + 3.2 \times 1]$	M1	Use work/energy equation for A
	Alternative scheme for first 6 marks of 7(ii) [Work-energy applied to B]]	
	Friction = $0.2 \times 1.6g$ [= 3.2]	B1	
	$[2.4g \sin 30 - T = 2.4a T - F = 1.6a]$	M1	Apply Newton's 2nd law to A and B and solve for T
	T = 6.72	A1	
		M1	Find energy loss/gain for <i>B</i> Allow either term
	$\pm(\frac{1}{2} \times 2.4 \times v^2 - 2.4g\sin 30)$	A1	
	$2.4g\sin 30 = \frac{1}{2} \times 2.4 \times v^2 + 6.72 \times 1$	M1	Use work/energy equation for <i>B</i>