Question	Answer	Marks	Guidance
1	$-5=24 t-5 t^{2}$	M1	Use $s=u t+\frac{1}{2} a t^{2}$
	$5 t^{2}-24 t-5=0$	M1	Solve relevant 3 term quadratic
	$t=5$	A1	
		3	
	Alternative scheme for Question 1		
	$0=24-10 t_{1} \rightarrow t_{1}=2.4$	M1	Attempt to find the time taken to reach the highest point
	$\begin{aligned} & 0=24^{2}+2 \times(-10) \times h \rightarrow h=28.8 \\ & \text { And } \quad 33.8=\frac{1}{2} g t_{2}{ }^{2} \rightarrow t_{2}=2.6 \end{aligned}$	M1	Find total height h reached and attempt to find time taken from highest point to ground level
	$t=t_{1}+t_{2}=5$	A1	

Question	Answer	Marks	Guidance
2	[$10 \cos \alpha=8$ or $10 \cos \beta=6]$	M1	Introduce α or β, an angle between the 10 N force and the vertical or horizontal and attempt to resolve forces
	$\alpha=36.9$ or $\beta=53.1$	A1	
	Angle between 6 N and 10 N is 126.9	B1	
	Angle between 8 N and 10 N is 143.1	B1	
		4	
	Alternative scheme for Question 2		
	$\frac{10}{\sin 90}=\frac{6}{\sin \gamma}=\frac{8}{\sin \delta}$	M1	Attempt to use Lami's theorem $\gamma(8$ and 10$), \delta(6$ and 10$)$
	All correct	A1	
	Angle between 8 N and 10 N is $\gamma=143.1$	B1	
	Angle between 6 N and 10 N is $\delta=126.9$	B1	

Question	Answer	Marks	Guidance
3(i)		M1	Attempt to resolve forces along the plane (2 terms)
	$100 \cos \theta=8 \mathrm{~g} \sin 30 \rightarrow \theta=66.4$	A1	
	$[R=8 \mathrm{~g} \cos 30+100 \sin \theta]$	M1	Resolve forces perpendicular to the plane (3 terms)
	$R=161$	A1	
		4	
3(ii)	$100 \cos 30-8 g \sin 30=8 a$	M1	Apply Newton's 2nd law parallel to the plane (3 terms)
	$a=5.83$	A1	
		2	

Question	Answer	Marks	Guidance
4 4(i)		M1	Attempt differentiation
	$v=3 t^{2}-8 t+4$	A1	
		$\mathbf{2}$	
	$3 t^{2}-8 t+4=0$	M1	Set $v=0$ and attempt to solve a relevant 3 term quadratic
	$t=\frac{2}{3}$ and $t=2$	A1	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
4(iii)	$[6 t-8=0]$	M1	Differentiate v and equate to 0
	$\left[t=\frac{4}{3}, v=3\left(\frac{4}{3}\right)^{2}-8\left(\frac{4}{3}\right)+4\right]$	M1	Solve for t and attempt v
	$v=-\frac{4}{3}$	A1	
		3	
	Alternativ	eme for	Question 4(iii)
	$\left[v=3\left(t^{2}-\frac{8}{3} t\right)+4=3\left(t-\frac{4}{3}\right)^{2}+\ldots \ldots .\right]$	M1	Attempt to complete the square for v
	$\left[t=\frac{4}{3}, v=3\left(t-\frac{4}{3}\right)^{2}-\frac{4}{3}\right]$	M1	Find value of t for minimum v and attempt to find v
	$v=-\frac{4}{3}$	A1	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$\left[s_{1}=\frac{1}{2}(0+12) \times 6\right]$	M1	Use constant acceleration equations or find area in (t, v) graph to find the distance s_{1} travelled in the first 6 seconds
	$\left[s_{2}=10 \times 12\right]$	M1	Use constant acceleration equations or find area in (t, v) graph to find s_{2} the distance travelled between 6 s and 16 s
	Distance for first 16 s is $36+10 \times 12=156$		
	Curve concave up for $0<t<6$ starting at $(0,0)$ ending at $(6,36)$	B1	Co-ordinates refer to (t, s) in a displacement-time graph
	Line, positive gradient, $6<t<16$ starts at $(6,36)$ ends at $(16,156)$	B1	
	Curve concave down, $16<t<20$ from $(16,156)$ to $(20,200)$	B1	
	$\mathbf{6}$		
$5($ (ii)	$\left[44=\frac{1}{2}(12+V) \times 4\right]$	M1	Use relevant constant acceleration equations or the area property of a $v-t$ graph
	A1		

Question	Answer	Marks	Guidance
6(i)	$[P=\mathrm{DF} \times v=850 \times 36]$	M1	Apply $P=\mathrm{DF} \times v$ with $\mathrm{DF}=$ Resistance force
	Power $=$ rate of working $=30.6 \mathrm{~kW}$	A1	
		2	
6(ii)	$[\mathrm{DF}=1250 \mathrm{~g} \times 0.1+850]$	M1	Driving force comprising of resistance plus a weight component
	$\mathrm{DF}=\frac{63000}{v}$	M1	DF $=\frac{P}{v}$
	$v=30$ so speed of car is $30 \mathrm{~ms}^{-1}$	A1	
		3	
6(iii)	Gain in $\mathrm{KE}=\frac{1}{2} \times 1250 \times\left(24^{2}-20^{2}\right)$	B1	[= 1100000
	Loss in PE = $1250 \mathrm{~g} \times 176 \times 0.1$	B1	[$=220000$]
	WD by car's engine $=20000 \times 8$	B1	[= 1600000
	$\begin{aligned} & {[160000+220000=} \\ & \text { WD against resistance }+110000] \end{aligned}$	M1	4 term work energy equation
	$\mathrm{WD}=270000 \mathrm{~J}=270 \mathrm{~kJ}$	A1	
		5	

Question	Answer	Marks	Guidance
7(i)		M1	Apply Newton 2nd law to either A or to B or to the system
		A1	One correct equation
		A1	A second correct equation
	$a=0.171$	M1	Solve for a
	$v^{2}=2 \times a \times 0.4$	M1	Use $v^{2}=u^{2}+2 a s$ with $u=0$
	$v=0.370$ so speed of A is $0.370 \mathrm{~ms}^{-1}$	A1	
		6	
	Alternative scheme for Question 7(i)		
		M1	Attempt KE gain or PE loss
	$\text { KE gain }=\frac{1}{2} \times 0.8 \times v^{2}+\frac{1}{2} \times 1.2 \times v^{2}$	A1	v is the required speed of A
	$\begin{aligned} & \text { PE loss }= \\ & 1.2 g \times 0.4 \sin 30-0.8 g \times 0.4 \sin 45 \end{aligned}$	A1	
	$\begin{aligned} & \frac{1}{2} \times 0.8 \times v^{2}+\frac{1}{2} \times 1.2 \times v^{2}= \\ & 1.2 g \times 0.4 \sin 30-0.8 g \times 0.4 \sin 45 \end{aligned}$	M1	4 term energy equation
		M1	Solving for v
	$v=0.370$ so speed of A is $0.370 \mathrm{~ms}^{-1}$	A1	

Question	Answer	Marks	Guidance
7(ii)	$\begin{aligned} & R_{A}=0.8 g \cos 45=4 \sqrt{2} \\ & R_{B}=1.2 g \cos 30=6 \sqrt{3} \end{aligned}$	B1	For either R_{A} or R_{B}
	$F_{A}=4 \sqrt{2} \mu$ and $F_{B}=6 \sqrt{3} \mu$	M1	Either F_{A} or F_{B} used
	$\begin{array}{lr} A & 0.8 g \sin 45+F_{A}=T \\ B & 1.2 g \sin 30-F_{B}=T \\ \text { or system equation: } \\ 12 \sin 30-8 \sin 45=F_{A}+F_{B} \end{array}$	M1	Resolve parallel to the plane either for both particles A and B or for the system equation
	Correct equation(s)	A1	
		M1	Eliminate T and solve for μ
	$\begin{aligned} \mu & =\frac{(6-4 \sqrt{2})}{(6 \sqrt{3}+4 \sqrt{ } 2)} \\ & =0.0214 \end{aligned}$	A1	
		6	

