Question	Answer	Marks
1	Obtain a correct unsimplified version of the x or x^2 term of the expansion of $(4-3x)^{-\frac{1}{2}}$ or $\left(1-\frac{3}{4}x\right)^{-\frac{1}{2}}$	M1
	State correct first term 2	B1
	Obtain the next two terms $\frac{3}{4}x + \frac{27}{64}x^2$	A1 + A1
	Total:	4

Question	Answer	Marks
2	State or imply $u^2 = u + 5$, or equivalent in 5^x	B1
	Solve for u , or 5^x	M1
	Obtain root $\frac{1}{2}(1+\sqrt{21})$, or decimal in [2.79, 2.80]	A1
	Use correct method for finding <i>x</i> from a positive root	M1
	Obtain answer $x = 0.638$ and no other answer	A1
	Total:	5

Question	Answer	Marks
3	Integrate by parts and reach $ax \sin 3x + b \int \sin 3x dx$	M1*
	Obtain $\frac{1}{3}x\sin 3x - \frac{1}{3}\int \sin 3x dx$, or equivalent	A1
	Complete the integration and obtain $\frac{1}{3}x\sin 3x + \frac{1}{9}\cos 3x$, or equivalent	A1
	Substitute limits correctly having integrated twice and obtained $ax \sin 3x + b \cos 3x$	M1(dep*)
	Obtain answer $\frac{1}{18}(\pi - 2)$ OE	A1
	Total:	5

Question	Answer	Marks
4(i)	Use the quotient or product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain the given equation	A1
	Total:	3
4(ii)	Sketch a relevant graph, e.g. $y = \ln x$	B1
	Sketch a second relevant graph, e.g. $y = 1 + \frac{3}{x}$, and justify the given statement	B1
	Total:	2
4(iii)	Use iterative formula $x_{n+1} = \frac{3+x}{\ln x_n}$ correctly at least once	M1
	Obtain final answer 4.97	A1
	Show sufficient iterations to 4 d.p.to justify 4.97 to 2 d.p. or show there is a sign change in the interval (4.965, 4.975)	A1
	Total:	3

Question	Answer	Marks
5(i)	Attempt cubic expansion and equate to 1	M1
	Obtain a correct equation	A1
	Use Pythagoras and double angle formula in the expansion	M1
	Obtain the given result correctly	A1
	Total:	4
5(ii)	Use the identity and carry out a method for finding a root	M1
	Obtain answer 20.9°	A1
	Obtain a second answer, e.g. 69.1°	A1FT
	Obtain the remaining answers, e.g. 110.9° and 159.1°, and no others in the given interval	A1FT
	Total:	4

Question	Answer	Marks
6(i)	Carry out relevant method to find A and B such that $\frac{1}{4 - y^2} = \frac{A}{2 + y} + \frac{B}{2 - y}$	M1
	Obtain $A = B = \frac{1}{4}$	A1
	Total:	2
6(ii)	Separate variables correctly and integrate at least one side to obtain one of the terms $a \ln x$, $b \ln (2 + y)$ or $c \ln (2 - y)$	M1
	Obtain term ln x	B1
	Integrate and obtain terms $\frac{1}{4}\ln(2+y) - \frac{1}{4}\ln(2-y)$	A1FT
	Use $x = 1$ and $y = 1$ to evaluate a constant, or as limits, in a solution containing at least two terms of the form $a \ln x$, $b \ln (2 + y)$ and $c \ln (2 - y)$	M1
	Obtain a correct solution in any form, e.g. $\ln x = \frac{1}{4} \ln (2+y) - \frac{1}{4} \ln (2-y) - \frac{1}{4} \ln 3$	A1
	Rearrange as $\frac{2(3x^4-1)}{(3x^4+1)}$, or equivalent	A1
	Total:	6

Question	Answer	Marks
7(i)	State answer $R = \sqrt{5}$	B1
	Use trig formulae to find tan α	M1
	Obtain $\tan \alpha = 2$	A1
	Total:	3
7(ii)	State that the integrand is $3\sec^2(\theta - \alpha)$	B1FT
	State correct indefinite integral $3\tan(\theta - \alpha)$	B1FT
	Substitute limits correctly	M1
	Use $tan(A \pm B)$ formula	M 1
	Obtain the given exact answer correctly	A1
	Total:	5

Question	Answer	Marks
8(i)	State or imply $3y^2 \frac{dy}{dx}$ as derivative of y^3	B1
	State or imply $3y^2 + 6xy \frac{dy}{dx}$ as derivative of $3xy^2$	B1
	Equate derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer	A1
	Total:	4
8(ii)	Equate denominator to zero and solve for <i>y</i>	M1*
	Obtain $y = 0$ and $x = a$	A1
	Obtain $y = \alpha x$ and substitute in curve equation to find x or to find y	M1(dep*)
	Obtain $x = -a$	A1
	Obtain $y = 2a$	A1
	Total:	5

Question	Answer	Marks
9(a)	Substitute and obtain a correct equation in <i>x</i> and <i>y</i>	B 1
	Use $i^2 = -1$ and equate real and imaginary parts	M1
	Obtain two correct equations in x and y, e.g. 3x - y = 1 and $3y - x = 5$	A1
	Solve and obtain answer $z = 1 + 2(i)$	A1
	Total:	4
9(b)	Show a circle with radius 3	B1
	Show the line $y = 2$ extending in both quadrants	B 1
	Shade the correct region	B 1
	Carry out a complete method for finding the greatest value of $\arg z$	M1
	Obtain answer 2.41	A1
	Total:	5

Question	Answer	Marks
10(i)	Carry out a correct method for finding a vector equation for <i>AB</i>	M1
	Obtain $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k} + \lambda(2\mathbf{i} - 2\mathbf{k})$, or equivalent	A1
	Equate pair(s) of components AB and l and solve for λ or μ	M1(dep*)
	Obtain correct answer for λ or μ	A1
	Verify that all three component equations are not satisfied	A1
	Total:	5
10(ii)	State or imply a direction vector for <i>AP</i> has components $(2 + t, 5 + 2t, -3 - 2t)$	B1
	State or imply that $\cos 120^\circ$ equals the scalar product of \overrightarrow{AP} and \overrightarrow{AB} divided by the product of their moduli	M1
	Carry out the correct processes for finding the scalar product and the product of the moduli in terms of t , and obtain an equation in terms of t	M1
	Obtain the given equation correctly	A1
	Solve the quadratic and use a root to find a position vector for <i>P</i>	M1
	Obtain position vector $2\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ from $t = -2$, having rejected the root $t = -\frac{2}{3}$	A1
	Total:	6