Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
1	<i>EITHER</i> : State or imply non-modular equation $3^{2}(2^{x}-1)^{2} = (2^{x})^{2}$, or pair of equations	M1	$8(2^{x})^{2} - 18(2^{x}) + 9 = 0$
	$3(2^x-1)=\pm 2^x$		
	Obtain $2^x = \frac{3}{2}$ and $2^x = \frac{3}{4}$ or equivalent	A1	
	<i>OR</i> : Obtain $2^x = \frac{3}{2}$ by solving an equation	B1	
	Obtain $2^x = \frac{3}{4}$ by solving an equation	B1	
	Use correct method for solving an equation of the form $2^x = a$, where $a > 0$	M1	
	Obtain final answers $x = 0.585$ and $x = -0.415$ only	A1	The question requires 3 s.f. Do not ISW if they go on to reject one value
		4	

May/June 2018

Question	Answer	Marks	Guidance
2	Use correct tan $(A \pm B)$ formula and obtain an equation in tan θ	M1	$\frac{1}{\tan\theta} + \frac{1 - \tan\theta \tan 45}{\tan\theta + \tan 45} = 2 \text{ Allow M1 with } \tan 45^{\circ}$ $= \frac{1}{\tan\theta} + \frac{1 - \tan\theta}{\tan\theta + 1}$
	Obtain a correct equation in any form	A1	With values substituted
	Reduce to $3\tan^2\theta = 1$, or equivalent	A1	
	Obtain answer $x = 30^{\circ}$	A1	One correct solution
	Obtain answer $x = 150^{\circ}$	A1	Second correct solution and no others in range
	<i>OR</i> : use correct $sin(A \pm B)$ and $cos(A \pm B)$ to form equation in $sin\theta$ and $cos\theta$ M1A1		
	Reduce to $\tan^2 \theta = \frac{1}{3}$, $\sin^2 \theta = \frac{1}{4}$, $\cos^2 \theta = \frac{3}{4}$ or $\cot^2 \theta = 3$ A1 etc.		
		5	

May/June 2018

Question	Answer	Marks	Guidance
3(i)	Fully justify the given statement	B1	Some indication of use of gradient of curve = gradient of tangent (<i>PT</i>) and no errors seen /no incorrect statements
		1	
3(ii)	Separate variables and attempt integration of at least one side Obtain terms $\ln y$ and $\frac{1}{2}x$	B1 B1	Must be working from $\int \frac{1}{y} dy = \int k dx$ B marks are not available for fortuitously correct answers
	Use $x = 4$, $y = 3$ to evaluate a constant or as limits in a solution with terms $a \ln y$ and bx , where $ab \neq 0$	M1	
	Obtain correct solution in any form	A1	$\ln y = \frac{1}{2}x + \ln 3 - 2$
	Obtain answer $y = 3e^{\frac{1}{2}x-2}$, or equivalent	A1	Accept $y = e^{\frac{1}{2}x + \ln 3 - 2}$, $y = e^{\frac{x - 1.80}{2}}$, $y = 3\sqrt{e^{x - 4}}$ $ y = \dots$ scores A0
		5	

May/June 2018

Question	Answer	Marks	Guidance
4(i)	Use correct double angle formulae and express LHS in terms of $\cos x$ and $\sin x$	M1	$\frac{2\sin x - 2\sin x \cos x}{1 - \left(2\cos^2 x - 1\right)}$
	Obtain a correct expression	A1	
	Complete method to get correct denominator e.g. by factorising to remove a factor of $1 - \cos x$	M1	
	Obtain the given RHS correctly OR (working R to L):	A1	
	$\frac{\sin x}{1+\cos x} \times \frac{1-\cos x}{1-\cos x} = \frac{\sin x - \sin x \cos x}{1-\cos^2 x}$ $= \frac{2\sin x - 2\sin x \cos x}{2-2\cos^2 x}$ M1A1		Given answer so check working carefully
	$=\frac{2\sin x - \sin 2x}{1 - \cos 2x} \qquad \qquad M1A1$		
		4	
4(ii)	State integral of the form $a \ln(1 + \cos x)$	M1*	If they use the substitution $u = 1 + \cos x$ allow M1A1 for $-\ln u$
	Obtain integral $-\ln(1 + \cos x)$	A1	
	Substitute correct limits in correct order	M1(dep)*	
	Obtain answer $\ln\left(\frac{3}{2}\right)$, or equivalent	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
5(i)	State or imply 3 $y^2 \frac{dy}{dx}$ as derivative of y^3	B1	
	State or imply $6xy + 3x^2 \frac{dy}{dx}$ as derivative of $3x^2y$	B1	$3x^{2} + 6xy + 3x^{2}\frac{dy}{dx} - 3y^{2}\frac{dy}{dx} = 0$
	<i>OR</i> State or imply $2x(x+3y) + x^2\left(1+3\frac{dy}{dx}\right)$ as derivative of		
	$x^2(x+3y)$		
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1	Given answer so check working carefully
	Obtain the given answer	A1	
		4	
5(ii)	Equate derivative to -1 and solve for <i>y</i>	M1*	
	Use their $y = -2x$ or equivalent to obtain an equation in x or y	M1(dep*)	
	Obtain answer $(1, -2)$	A1	
	Obtain answer $(\sqrt[3]{3}, 0)$	B1	Must be exact e.g. $e^{\frac{1}{3}\ln 3}$ but ISW if decimals after exact value seen
		4	

May/June 2018

Question	Answer	Marks	Guidance
6(i)	Use correct method for finding the area of a segment and area of semicircle and form an equation in θ	M1	e.g. $\frac{\pi a^2}{4} = \frac{1}{2}a^2\theta - \frac{1}{2}a^2\sin\theta$
	State a correct equation in any form	A1	Given answer so check working carefully
	Obtain the given answer correctly	A1	
		3	
6(ii)	Calculate values of a relevant expression or pair of expressions at $\theta = 2.2$ and $\theta = 2.4$	M1	e.g. $f(\theta) = \frac{\pi}{2} + \sin \theta$ $\begin{cases} f(2.2) = 2.37 > 2.2 \\ f(2.4) = 2.24 < 2.4 \\ \end{cases}$ or $f(\theta) = \theta - \frac{\pi}{2} - \sin \theta$ $\begin{cases} f(2.2) = -0.17 < 0 \\ f(2.4) = +0.15 > 0 \end{cases}$
	Complete the argument correctly with correct calculated values	A1	
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks		Guidance		
6(iii)	iii) Use $\theta_{n+1} = \frac{1}{2}\pi + \sin\theta_n$ correctly at least once	M1	e.g	e.g		
				2.2	2.3	2.4
	Obtain final answer 2.31	A1		2.3793	2.3165	2.2463
	Show sufficient iterations to 4 d.p. to justify 2.31 to 2 d.p. or show there is a sign change in the interval (2.305, 2.315)	A1		2.2614	2.3054	2.3512
	show there is a sign change in the interval (2.505, 2.515)			2.3417	2.3129	2.2814
				2.2881	2.3079	2.3288
				2.3244		2.2970
				2.3000		2.3185
				2.3165		2.3041
				2.3054		2.3138
				2.3129		2.3072
		3				

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

9709 s18 ms 32

Question		Answer	Marks	Guidance
7(i)	Substitute in	n <i>uv</i> , expand the product and use $i^2 = -1$	M1	
	Obtain answ	$\operatorname{ver} uv = -11 - 5\sqrt{3}i$	A1	
	EITHER:	Substitute in u/v and multiply numerator and denominator by the conjugate of v , or equivalent	M1	
		Obtain numerator $-7 + 7\sqrt{3}i$ or denominator 7	A1	
		Obtain final answer $-1 + \sqrt{3}i$	A1	
	OR:	Substitute in u/v , equate to $x + iy$ and solve for x or for y	M1	$\begin{cases} -3\sqrt{3} = \sqrt{3}x - 2y\\ 1 = 2x + \sqrt{3}y \end{cases}$
	Obtain $x = -$	$-1 \text{ or } y = \sqrt{3}$	A1	
	Obtain final	answer $-1 + \sqrt{3}$ i	A1	
			5	

May/June 2018

Question	Answer	Marks	Guidance
7(ii)	Show the points <i>A</i> and <i>B</i> representing <i>u</i> and <i>v</i> in relatively correct positions	B1	
	Carry out a complete method for finding angle <i>AOB</i> , e.g. calculate $\arg(u/v)$	M1	<i>OR</i> : $\tan a = \frac{-1}{3\sqrt{3}}, \tan b = \frac{2}{\sqrt{3}} \implies \tan(a-b) = \frac{3\sqrt{3}}{1-\frac{2}{9}}$
	If using $\theta = \tan^{-1}(-\sqrt{3})$ must refer to $\arg\left(\frac{u}{v}\right)$		$= -\sqrt{3}$ $\Rightarrow \theta = \frac{2\pi}{3}$
			$OR: \cos \theta = \frac{\begin{pmatrix} -3\sqrt{3} \\ 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} \\ 2 \end{pmatrix}}{\sqrt{7}\sqrt{28}} = \frac{-9+2}{14} = \frac{-1}{2}$
			$\Rightarrow \theta = \frac{2\pi}{3}$
			<i>OR</i> : $\cos \theta = \frac{28 + 7 - 49}{2\sqrt{28}\sqrt{7}} = -\frac{1}{2} \implies \theta = \frac{2\pi}{3}$
	Prove the given statement	A1	Given answer so check working carefully
		3	

May/June 2018

Question	Answer	Marks	Guidance
8(i)	Use correct product or quotient rule	M1	$\frac{dy}{dx} = -\frac{1}{3}(x+1)e^{-\frac{1}{3}x} + e^{-\frac{1}{3}x}$
			$\frac{dy}{dx} = -\frac{1}{3}(x+1)e^{-\frac{1}{3}x} + e^{-\frac{1}{3}x}$ or $\frac{dy}{dx} = \frac{e^{\frac{1}{3}x} - (x+1)\frac{1}{3}e^{\frac{1}{3}x}}{e^{\frac{2}{3}x}}$
	Obtain complete correct derivative in any form	A1	
	Equate derivative to zero and solve for <i>x</i>	M1	
	Obtain answer $x = 2$ with no errors seen	A1	
		4	
8(ii)	Integrate by parts and reach $a(x+1)e^{-\frac{1}{3}x} + b\int e^{-\frac{1}{3}x} dx$	M1*	
	Obtain $-3(x+1)e^{-\frac{1}{3}x} + 3\int e^{-\frac{1}{3}x} dx$, or equivalent	A1	$-3xe^{-\frac{1}{3}x} + \int 3e^{-\frac{1}{3}x} dx - 3e^{-\frac{1}{3}x}$
	Complete integration and obtain $-3(x+1)e^{-\frac{1}{3}x} - 9e^{-\frac{1}{3}x}$, or equivalent	A1	
	Use correct limits $x = -1$ and $x = 0$ in the correct order, having integrated twice	M1(dep*)	
	Obtain answer $9e^{\frac{1}{3}} - 12$, or equivalent	A1	
		5	

May/June 2018

9709 s18 ms 32

Question	Answer	Marks	Guidance
9(i)	Use a correct method to find a constant	M1	
	Obtain one of the values $A = -3$, $B = 1$, $C = 2$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	
		4	
9(ii)	Use a correct method to find the first two terms of the expansion of $(3-x)^{-1}$, $(1-\frac{1}{3}x)^{-1}$, $(2+x^2)^{-1}$ or $(1+\frac{1}{2}x^2)^{-1}$	M1	Symbolic binomial coefficients are not sufficient for the M1.
	Obtain correct unsimplified expansions up to the term in x^3 of each partial fraction	A1Ft + A1Ft	The ft is on <i>A</i> , <i>B</i> and <i>C</i> . $-1\left(1 + \frac{x}{3} + \frac{x^{2}}{9} + \frac{x^{3}}{27}\right) + \frac{x+2}{2}\left(1 - \frac{x^{2}}{2}\right)$ $-1 - \frac{x}{3} - \frac{x^{2}}{9} - \frac{x^{3}}{27} + 1 - \frac{x^{2}}{2} + \frac{x}{2} - \frac{x^{3}}{4}$
	Multiply out their expansion, up to the terms in x^3 , by $Bx + C$, where $BC \neq 0$	M1	
	Obtain final answer $\frac{1}{6}x - \frac{11}{18}x^2 - \frac{31}{108}x^3$, or equivalent	A1	
		5	

May/June 2018

Question		Answer	Marks	Guidance
10(i)	Equate at lea	ast two pairs of components and solve for <i>s</i> or for <i>t</i>	M1	$\begin{cases} s = \frac{-4}{3} \\ t = \frac{-5}{3} \\ -5 \neq \frac{-1}{3} \end{cases} \text{ or } \begin{cases} s = -6 \\ t = -11 \\ 7 \neq -7 \end{cases} \begin{cases} s = \frac{-2}{5} \\ t = \frac{-13}{5} \\ \frac{6}{5} \neq \frac{-8}{5} \end{cases}$
	Obtain corre	ect answer for s or t, e.g. $s = -6$, $t = -11$	A1	
	Verify that a to intersect	all three equations are not satisfied and the lines fail	A1	
	State that th	e lines are not parallel	B1	
			4	
10(ii)	EITHER:	Use scalar product to obtain a relevant equation in <i>a</i> , <i>b</i> and <i>c</i> , e.g. $2a + 3b - c = 0$	B1	
		Obtain a second equation, e.g. $a + 2b + c = 0$, and solve for one ratio, e.g. $a : b$	M1	
		Obtain $a : b : c$ and state correct answer, e.g. $5\mathbf{i} - 3\mathbf{j} + \mathbf{k}$, or equivalent	A1	
	OR:	Attempt to calculate vector product of relevant vectors, e.g. $(2\mathbf{i} + 3\mathbf{j} - \mathbf{k}) \times (\mathbf{i} + 2\mathbf{j} + \mathbf{k})$	M1	
		Obtain two correct components	A1	
		Obtain correct answer, e.g. $5\mathbf{i} - 3\mathbf{j} + \mathbf{k}$	A1	
			3	

May/June 2018

Question		Answer	Marks	Guidance
10(iii)	EITHER:	State position vector or coordinates of the mid-point of a line segment joining points on <i>l</i> and <i>m</i> , e.g. $\frac{3}{2}\mathbf{i}+\mathbf{j}+\frac{5}{2}\mathbf{k}$	B1	<i>OR</i> : Use the result of (ii) to form equations of planes containing l and m B1
		Use the result of (ii) and the mid-point to find d	M1	Use average of distances to find equation of p . M1
		Obtain answer $5x - 3y + z = 7$, or equivalent	A1	Obtain answer $5x - 3y + z = 7$, or equivalent A1
	OR:	Using the result of part (ii), form an equation in d by equating perpendicular distances to the plane of a point on l and a point on m	M1	
		State a correct equation, e.g. $\left \frac{14-d}{\sqrt{35}}\right = \left \frac{-d}{\sqrt{35}}\right $	A1	
		Solve for <i>d</i> and obtain answer $5x - 3y + z =$ 7, or equivalent	A1	
			3	