Question	Answer	Marks	Guidance
1	EITHER: State or imply non-modular equation $3^{2}\left(2^{x}-1\right)^{2}=\left(2^{x}\right)^{2}$, or pair of equations $3\left(2^{x}-1\right)= \pm 2^{x}$	M1	$8\left(2^{x}\right)^{2}-18\left(2^{x}\right)+9=0$
	Obtain $2^{x}=\frac{3}{2}$ and $2^{x}=\frac{3}{4}$ or equivalent	A1	
	OR: \quad Obtain $2^{x}=\frac{3}{2}$ by solving an equation	B1	
	Obtain $2^{x}=\frac{3}{4}$ by solving an equation	B1	
	Use correct method for solving an equation of the form $2^{x}=a$, where $a>0$	M1	
	Obtain final answers $x=0.585$ and $x=-0.415$ only	A1	The question requires 3 s.f. Do not ISW if they go on to reject one value
		4	

Question	Answer	Marks	Guidance
2	Use correct $\tan (A \pm B)$ formula and obtain an equation in $\tan \theta$	M1	$\begin{aligned} & \frac{1}{\tan \theta}+\frac{1-\tan \theta \tan 45}{\tan \theta+\tan 45}=2 \text { Allow M1 with } \tan 45^{\circ} \\ & =\frac{1}{\tan \theta}+\frac{1-\tan \theta}{\tan \theta+1} \end{aligned}$
	Obtain a correct equation in any form	A1	With values substituted
	Reduce to $3 \tan ^{2} \theta=1$, or equivalent	A1	
	Obtain answer $x=30^{\circ}$	A1	One correct solution
	Obtain answer $x=150{ }^{\circ}$	A1	Second correct solution and no others in range
	$O R$: use correct $\sin (A \pm B)$ and $\cos (A \pm B)$ to form equation in $\sin \theta$ and $\cos \theta$ M1A1		
	Reduce to $\tan ^{2} \theta=\frac{1}{3}, \sin ^{2} \theta=\frac{1}{4}, \cos ^{2} \theta=\frac{3}{4}$ or $\cot ^{2} \theta=3$ etc.		
		5	

Question	Answer	Marks	Guidance
3(i)	Fully justify the given statement	B1	Some indication of use of gradient of curve $=$ gradient of tangent $(P T)$ and no errors seen /no incorrect statements
		1	
3(ii)	Separate variables and attempt integration of at least one side Obtain terms $\ln y$ and $\frac{1}{2} x$	B1 B1	Must be working from $\int \frac{1}{y} \mathrm{~d} y=\int k \mathrm{~d} x$ B marks are not available for fortuitously correct answers
	Use $x=4, y=3$ to evaluate a constant or as limits in a solution with terms $a \ln y$ and $b x$, where $a b \neq 0$	M1	
	Obtain correct solution in any form	A1	$\ln y=\frac{1}{2} x+\ln 3-2$
	Obtain answer $y=3 \mathrm{e}^{\frac{1}{2} x-2}$, or equivalent	A1	Accept $y=\mathrm{e}^{\frac{1}{2} x+\ln 3-2}, y=\mathrm{e}^{\frac{x-1.80}{2}}, y=3 \sqrt{\mathrm{e}^{x-4}}$ $\|y\|=\ldots$ scores A0
		5	

Question	Answer	Marks	Guidance
4(i)	Use correct double angle formulae and express LHS in terms of $\cos x$ and $\sin x$	M1	$\frac{2 \sin x-2 \sin x \cos x}{1-\left(2 \cos ^{2} x-1\right)}$
	Obtain a correct expression	A1	
	Complete method to get correct denominator e.g. by factorising to remove a factor of $1-\cos x$	M1	
	Obtain the given RHS correctly OR (working R to L):	A1	
	$\begin{aligned} \frac{\sin x}{1+\cos x} \times \frac{1-\cos x}{1-\cos x} & =\frac{\sin x-\sin x \cos x}{1-\cos ^{2} x} \\ & =\frac{2 \sin x-2 \sin x \cos x}{2-2 \cos ^{2} x} \end{aligned}$ M1A1		Given answer so check working carefully
	$=\frac{2 \sin x-\sin 2 x}{1-\cos 2 x} \quad \text { M1A1 }$		
		4	
4(ii)	State integral of the form $a \ln (1+\cos x)$	M1*	If they use the substitution $u=1+\cos x$ allow M1A1 for $-\ln u$
	Obtain integral $-\ln (1+\cos x)$	A1	
	Substitute correct limits in correct order	M1(dep)*	
	Obtain answer $\ln \left(\frac{3}{2}\right)$, or equivalent	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	State or imply $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{3}	B1	
	State or imply $6 x y+3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $3 x^{2} y$ OR State or imply $2 x(x+3 y)+x^{2}\left(1+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)$ as derivative of $x^{2}(x+3 y)$	B1	$3 x^{2}+6 x y+3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
	Equate derivative of the LHS to zero and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1	Given answer so check working carefully
	Obtain the given answer	A1	
		4	
5(ii)	Equate derivative to - 1 and solve for y	M1*	
	Use their $y=-2 x$ or equivalent to obtain an equation in x or y	M1(dep*)	
	Obtain answer ($1,-2$)	A1	
	Obtain answer ($\sqrt[3]{3}, 0)$	B1	Must be exact e.g. $e^{\frac{1}{3} \ln 3}$ but ISW if decimals after exact value seen
		4	

Question	Answer	Marks	Guidance
6 (i)	Use correct method for finding the area of a segment and area of semicircle and form an equation in θ	M1	$\text { e.g. } \frac{\pi a^{2}}{4}=\frac{1}{2} a^{2} \theta-\frac{1}{2} a^{2} \sin \theta$
	State a correct equation in any form	A1	Given answer so check working carefully
	Obtain the given answer correctly	A1	
		3	
6(ii)	Calculate values of a relevant expression or pair of expressions at $\theta=2.2$ and $\theta=2.4$	M1	$\begin{aligned} & \text { e.g. } \mathrm{f}(\theta)=\frac{\pi}{2}+\sin \theta \quad\left\{\begin{array}{l} \mathrm{f}(2.2)=2.37 \ldots>2.2 \\ \mathrm{f}(2.4)=2.24 \ldots<2.4 \end{array}\right. \\ & \text { or } \mathrm{f}(\theta)=\theta-\frac{\pi}{2}-\sin \theta \quad\left\{\begin{array}{l} \mathrm{f}(2.2)=-0.17 \ldots<0 \\ \mathrm{f}(2.4)=+0.15 \ldots>0 \end{array}\right. \end{aligned}$
	Complete the argument correctly with correct calculated values	A1	
		2	

Question	Answer	Marks		Gui	
6(iii)	Use $\theta_{n+1}=\frac{1}{2} \pi+\sin \theta_{n}$ correctly at least once	M1	e.g.	2.3	2.4
	Obtain final answer 2.31	A1	2.3793	2.3165	2.2463
	Show sufficient iterations to $4 \mathrm{~d} . \mathrm{p}$. to justify 2.31 to 2 d.p. or show there is a sign change in the interval $(2.305,2.315)$	A1	2.2614	2.3054	2.3512
			2.3417	2.3129	2.2814
			2.2881	2.3079	2.3288
			2.3244		2.2970
			2.3000		2.3185
			2.3165		2.3041
			2.3054		2.3138
			2.3129		2.3072
		3			

Question		Answer	Marks	Guidance
7(i)	Substitute in $u v$, expand the product and use $\mathrm{i}^{2}=-1$		M1	
	Obtain answer $u v=-11-5 \sqrt{3 i}$		A1	
	EITHER:	Substitute in u / v and multiply numerator and denominator by the conjugate of v, or equivalent	M1	
		Obtain numerator $-7+7 \sqrt{3}$ i or denominator 7	A1	
		Obtain final answer $-1+\sqrt{3} \mathrm{i}$	A1	
	OR:	Substitute in u / v, equate to $x+\mathrm{i} y$ and solve for x or for y	M1	$\left\{\begin{array}{c} -3 \sqrt{3}=\sqrt{3} x-2 y \\ 1=2 x+\sqrt{3} y \end{array}\right.$
	Obtain $x=$	or $y=\sqrt{3}$	A1	
	Obtain fin	nswer $-1+\sqrt{3}$ i	A1	
			5	

Question	Answer	Marks	Guidance
7(ii)	Show the points A and B representing u and v in relatively correct positions	B1	
	Carry out a complete method for finding angle $A O B$, e.g. calculate $\arg (u / v)$ If using $\theta=\tan ^{-1}(-\sqrt{3})$ must refer to $\arg \left(\frac{u}{v}\right)$	M1	$\begin{aligned} & \text { OR: } \begin{aligned} \tan a=\frac{-1}{3 \sqrt{3}}, \tan b=\frac{2}{\sqrt{3}} \Rightarrow & \tan (a-b)=\frac{\frac{-1}{3 \sqrt{3}}-\frac{2}{\sqrt{3}}}{1-\frac{2}{9}} \\ & =-\sqrt{3} \end{aligned} \\ & \Rightarrow \theta=\frac{2 \pi}{3} \\ & \text { OR: } \cos \theta=\frac{\binom{-3 \sqrt{3}}{1}\binom{\sqrt{3}}{2}}{\sqrt{7} \sqrt{28}}=\frac{-9+2}{14}=\frac{-1}{2} \\ & \Rightarrow \theta=\frac{2 \pi}{3} \end{aligned}$
	Prove the given statement	A1	Given answer so check working carefully
		3	

Question	Answer	Marks	Guidance
8(i)	Use correct product or quotient rule	M1	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{3}(x+1) \mathrm{e}^{-\frac{1}{3} x}+\mathrm{e}^{-\frac{1}{3} x} \\ & \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{\frac{1}{3} x}-(x+1) \frac{1}{3} \mathrm{e}^{\frac{1}{3} x}}{\mathrm{e}^{\frac{2}{3} x}} \end{aligned}$
	Obtain complete correct derivative in any form	A1	
	Equate derivative to zero and solve for x	M1	
	Obtain answer $x=2$ with no errors seen	A1	
		4	
8(ii)	Integrate by parts and reach $a(x+1) \mathrm{e}^{-\frac{1}{3} x}+b \int \mathrm{e}^{-\frac{1}{3} x} \mathrm{~d} x$	M1*	
	Obtain $-3(x+1) \mathrm{e}^{-\frac{1}{3} x}+3 \int \mathrm{e}^{-\frac{1}{3} x} \mathrm{~d} x$, or equivalent	A1	$-3 x e^{-\frac{1}{3} x}+\int 3 \mathrm{e}^{-\frac{1}{3} x} \mathrm{~d} x-3 \mathrm{e}^{-\frac{1}{3} x}$
	Complete integration and obtain $-3(x+1) \mathrm{e}^{-\frac{1}{3} x}-9 \mathrm{e}^{-\frac{1}{3} x}$, or equivalent	A1	
	Use correct limits $x=-1$ and $x=0$ in the correct order, having integrated twice	M1(dep*)	
	Obtain answer $9 \mathrm{e}^{\frac{1}{3}}-12$, or equivalent	A1	
		5	

Question	Answer	Marks	Guidance
9(i)	Use a correct method to find a constant	M1	
	Obtain one of the values $A=-3, B=1, C=2$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	
		4	
9(ii)	Use a correct method to find the first two terms of the expansion of $(3-x)^{-1},\left(1-\frac{1}{3} x\right)^{-1},\left(2+x^{2}\right)^{-1}$ or $\left(1+\frac{1}{2} x^{2}\right)^{-1}$	M1	Symbolic binomial coefficients are not sufficient for the M1.
	Obtain correct unsimplified expansions up to the term in x^{3} of each partial fraction	$\mathbf{A 1 F t}+\mathbf{A 1 F t}$	The ft is on A, B and C. $\begin{aligned} & -1\left(1+\frac{x}{3}+\frac{x^{2}}{9}+\frac{x^{3}}{27} \cdots\right)+\frac{x+2}{2}\left(1-\frac{x^{2}}{2} \ldots\right) \\ & -1-\frac{x}{3}-\frac{x^{2}}{9}-\frac{x^{3}}{27}+1-\frac{x^{2}}{2}+\frac{x}{2}-\frac{x^{3}}{4} \end{aligned}$
	Multiply out their expansion, up to the terms in x^{3}, by $B x+C$, where $B C \neq 0$	M1	
	Obtain final answer $\frac{1}{6} x-\frac{11}{18} x^{2}-\frac{31}{108} x^{3}$, or equivalent	A1	
		5	

Question		Answer	Marks	Guidance
10(i)	Equate at least two pairs of components and solve for s or for t		M1	$\left\{\begin{array} { l } { s = \frac { - 4 } { 3 } } \\ { t = \frac { - 5 } { 3 } } \\ { - 5 \neq \frac { - 1 } { 3 } } \end{array} \text { or } \left\{\begin{array} { l } { s = - 6 } \\ { t = - 1 1 } \\ { 7 \neq - 7 } \end{array} \text { or } \left\{\begin{array}{c} s=\frac{-2}{5} \\ t=\frac{-13}{5} \\ \frac{6}{5} \neq \frac{-8}{5} \end{array}\right.\right.\right.$
	Obtain correct answer for s or t, e.g. $s=-6, t=-11$		A1	
	Verify that all three equations are not satisfied and the lines fail to intersect		A1	
	State that the lines are not parallel		B1	
			4	
10(ii)	EITHER:	Use scalar product to obtain a relevant equation in a, b and c, e.g. $2 a+3 b-c=0$	B1	
		Obtain a second equation, e.g. $a+2 b+c=0$, and solve for one ratio, e.g. $a: b$	M1	
		Obtain $a: b: c$ and state correct answer, e.g. $5 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$, or equivalent	A1	
	OR:	Attempt to calculate vector product of relevant vectors, e.g. $(2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}) \times(\mathbf{i}+2 \mathbf{j}+\mathbf{k})$	M1	
		Obtain two correct components	A1	
		Obtain correct answer, e.g. $5 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$	A1	
			3	

Question		Answer	Marks	Guidance
10(iii)	EITHER:	State position vector or coordinates of the mid-point of a line segment joining points on l and m, e.g. $\frac{3}{2} \mathbf{i}+\mathbf{j}+\frac{5}{2} \mathbf{k}$	B1	$O R$: Use the result of (ii) to form equations of planes containing l and m
		Use the result of (ii) and the mid-point to find d	M1	Use average of distances to find equation of p. M1
		Obtain answer $5 x-3 y+z=7$, or equivalent	A1	Obtain answer $5 x-3 y+z=7$, or equivalent A1
	OR:	Using the result of part (ii), form an equation in d by equating perpendicular distances to the plane of a point on l and a point on m	M1	
		State a correct equation, e.g. $\left\|\frac{14-d}{\sqrt{35}}\right\|=\left\|\frac{-d}{\sqrt{35}}\right\|$	A1	
		Solve for d and obtain answer $5 x-3 y+z=$ 7, or equivalent	A1	
			3	

