Question	Answer	Marks
1	Use law for the logarithm of a product, quotient or power	M1
	Obtain a correct equation free of logarithms, e.g. $4\left(x^{4}-4\right)=x^{4}$	A1
	Solve for x	M1
	Obtain answer $x=1.52$ only	A1
		$\mathbf{4}$

Question	Answer	Marks
2(i)	Use trig formulae and obtain an equation in $\sin x$ and $\cos x$	M1*
	Obtain a correct equation in any form	A1
	Substitute exact trig ratios and obtain an expression for $\tan x$	M1(dep*)
	Obtain answer $\tan x=\frac{-(6+\sqrt{6})}{(6-\sqrt{2})}$ or equivalent	A1
	2(ii)	State answer, e.g. 118.5°
	State second answer, e.g. 298.5°	$\mathbf{4}$
		B1

Question	Answer	Marks
3	Use quotient or product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain a quadratic in $\tan \frac{1}{2} x$ or an equation of the form $a \sin x=b$	M1*
	Solve for x	M1(dep*)
	Obtain answer 0.340	A1
	Obtain second answer 2.802 and no other in the given interval	A1
		$\mathbf{6}$

Question	Answer	Marks
4	EITHER: Commence division by $x^{2}-x+1$ and reach a partial quotient of the form $x^{2}+k x$	M1
	Obtain quotient $x^{2}+3 x+2$	A1
	Either Set remainder identically equal to zero and solve for a or for b, or multiply given divisor and found quotient and obtain a or b	M1
	Obtain $a=1$	A1
	Obtain $b=2$	A1
	$O R$: Assume an unknown factor $x^{2}+B x+C$ and obtain an equation in B and/or C	M1
	Obtain $B=3$ and $A=2$	A1
	Either Use equations to obtain a or b or multiply given divisor and found factor to obtain a or b	M1
	Obtain $a=1$	A1
	Obtain $b=2$	A1
		5

Question	Answer	Marks
5(i)	State or imply $d x=-2 \cos \theta \sin \theta \mathrm{~d} \theta$, or equivalent	B1
	Substitute for x and $\mathrm{d} x$, and use Pythagoras	M1
	Obtain integrand $\pm 2 \cos ^{2} \theta$	A1
	Justify change of limits and obtain given answer correctly	A1
		4
5(ii)	Obtain indefinite integral of the form $a \theta+b \sin 2 \theta$	M1*
	$\text { Obtain } \theta+\frac{1}{2} \sin 2 \theta$	A1
	Use correct limits correctly	M1(dep*)
	Obtain answer $\frac{1}{6} \pi$ with no errors seen	A1
		4

Question	Answer	Marks
6 (i)	Separate variables correctly and integrate at least one side	B1
	Obtain term $\ln x$	B1
	Obtain term $-\frac{2}{3} k t \sqrt{t}$, or equivalent	B1
	Evaluate a constant, or use limits $x=100$ and $t=0$, in a solution containing terms $a \ln x$ and $b t \sqrt{t}$	M1
	Obtain correct solution in any form, e.g. $\ln x=-\frac{2}{3} k t \sqrt{t}+\ln 100$	A1
		5
6(ii)	Substitute $x=80$ and $t=25$ to form equation in k	M1
	Substitute $x=40$ and eliminate k	M1
	Obtain answer $t=64.1$	A1
		3

Question	Answer	Marks
7(i)	Use quadratic formula, or completing the square, or the substitution $z=x+\mathrm{i} y$ to find a root, using $\mathrm{i}^{2}=-1$	M1
	Obtain a root, e.g. $-\sqrt{6}-\sqrt{2 \mathrm{i}}$	A1
	Obtain the other root, e.g. $-\sqrt{6}-\sqrt{2 \mathrm{i}}$	A1
		3
7(ii)	Represent both roots in relatively correct positions	B1ft
		1
7(iii)	State or imply correct value of a relevant length or angle, e.g. $O A, O B, A B$, angle between $O A$ or $O B$ and the real axis	B1ft
	Carry out a complete method for finding angle $O A B$	M1
	Obtain $A O B=60^{\circ}$ correctly	A1
		3
7(iv)	Give a complete justification of the given statement	B1
		1

Question	Answer	Marks
8(i)	Integrate by parts and reach $l x \mathrm{e}^{-\frac{1}{2} x}+m \int \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x$	M1*
	Obtain $-2 x \mathrm{e}^{-\frac{1}{2} x}+2 \int \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x$	A1
	Complete the integration and obtain $-2 x \mathrm{e}^{-\frac{1}{2} x}-4 \mathrm{e}^{-\frac{1}{2} x}$, or equivalent	A1
	Having integrated twice, use limits and equate result to 2	M1(dep*)
	Obtain the given equation correctly	A1
		5
8(ii)	Calculate values of a relevant expression or pair of expressions at $a=3$ and $a=3.5$	M1
	Complete the argument correctly with correct calculated values	A1
		2
8(iii)	Use the iterative formula $a_{n+1}=2 \ln \left(a_{n}+2\right)$ correctly at least once	M1
	Obtain final answer 3.36	A1
	Show sufficient iterations to 4 d.p. to justify 3.36 to 2 d.p., or show there is a sign change in the interval $(3.355,3.365)$	A1
		3

Question	Answer	Marks
9(i)	State or imply the form $A+\frac{B}{x-1}+\frac{C}{3 x+2}$	B1
	State or obtain $A=4$	B1
	Use a correct method to obtain a constant	M1
	Obtain one of $B=3, C=-1$	A1
	Obtain the other value	A1
		5
9(ii)	Use correct method to find the first two terms of the expansion of $(x-1)^{-1}$ or $(3 x+2)^{-1}$, or equivalent	M1
	Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction	$\mathbf{A 1 f t}+\mathbf{A 1 f t}$
	Add the value of A to the sum of the expansions	M1
	Obtain final answer $\frac{1}{2}-\frac{9}{4} x-\frac{33}{8} x^{2}$	A1
		5

Question	Answer	Marks
10(a)	EITHER: Find $\overrightarrow{P Q}$ (or $\overrightarrow{Q P}$) for a general point Q on l, e.g. $(1+\mu) \mathbf{i}+(4+2 \mu) \mathbf{j}+(4+3 \mu) \mathbf{k}$	B1
	Calculate the scalar product of $\overrightarrow{P Q}$ and a direction vector for l and equate to zero	M1
	Solve and obtain correct solution e.g. $\mu=-\frac{3}{2}$	A1
	Carry out method to calculate $P Q$	M1
	Obtain answer 1.22	A1
	OR1: Find $\overrightarrow{P Q}$ (or $\overrightarrow{Q P}$) for a general point Q on l	B1
	Use a correct method to express $P Q^{2}$ (or $P Q$) in terms of μ	M1
	Obtain a correct expression in any form	A1
	Carry out a complete method for finding its minimum	M1
	Obtain answer 1.22	A1
	OR2: \quad Calling $(4,2,5) A$, state $\overrightarrow{P A}($ or $\overrightarrow{A P})$ in component form, e.g. $\mathbf{i}+4 \mathbf{j}+4 \mathbf{k}$	B1
	Use a scalar product to find the projection of $\overrightarrow{P A}$ (or $\overrightarrow{A P}$) on l	M1
	Obtain correct answer $21 / \sqrt{14}$, or equivalent	A1
	Use Pythagoras to find the perpendicular	M1
	Obtain answer 1.22	A1
	OR3: State $\overrightarrow{P A}$ (or $\overrightarrow{A P}$) in component form	B1
	Calculate vector product of $\overrightarrow{P A}$ and a direction vector for l	M1
	Obtain correct answer, e.g. $4 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$	A1
	Divide modulus of the product by that of the direction vector	M1
	Obtain answer 1.22	A1
		5

Question	Answer	Marks
10(ii)	EITHER: Use scalar product to obtain a relevant equation in a, b and c, e.g. $a+2 b+3 c=0$	B1
	Obtain a second relevant equation, e.g. using $\overrightarrow{P A} a+4 b+4 c=0$, and solve for one ratio	M1
	Obtain $a: b: c=4: 1:-2$, or equivalent	A1
	Substitute a relevant point and values of a, b, c in general equation and find d	M1
	Obtain correct answer, $4 x+y-2 z=8$, or equivalent	A1
	OR1: Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i}+4 \mathbf{j}+4 \mathbf{k}) \times(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$	M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $4 \mathbf{i}+\mathbf{j}-\mathbf{2 k}$	A1
	Substitute a relevant point and find d	M1
	Obtain correct answer, $4 x+y-2 z=8$, or equivalent	A1
	OR2: Using a relevant point and relevant vectors form a 2-parameter equation for the plane	M1
	State a correct equation, e.g. $\mathbf{r}=4 \mathbf{i}+2 \mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}+4 \mathbf{j}+4 \mathbf{k})+\mu(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$	A1
	State three correct equations in x, y, z, λ and μ	A1
	Eliminate λ and μ	M1
	Obtain correct answer $4 x+y-2 z=8$, or equivalent	A1
		5

