Question	Answer	Marks
1	Use law for the logarithm of a product, quotient or power	M1
	Obtain a correct equation free of logarithms, e.g. $4(x^4 - 4) = x^4$	A1
	Solve for <i>x</i>	M1
	Obtain answer $x = 1.52$ only	A1
		4

Question	Answer	Marks
2(i)	Use trig formulae and obtain an equation in $\sin x$ and $\cos x$	M1*
	Obtain a correct equation in any form	A1
	Substitute exact trig ratios and obtain an expression for tan <i>x</i>	M1(dep*)
	Obtain answer $\tan x = \frac{-(6+\sqrt{6})}{(6-\sqrt{2})}$ or equivalent	A1
		4
2(ii)	State answer, e.g. 118.5°	B1
	State second answer, e.g. 298.5°	B1ft
		2

Question	Answer	Marks
3	Use quotient or product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain a quadratic in $tan \frac{1}{2}x$ or an equation of the form $a \sin x = b$	M1 *
	Solve for <i>x</i>	M1(dep*)
	Obtain answer 0.340	A1
	Obtain second answer 2.802 and no other in the given interval	A1
		6

Question	Answer	Marks
4	<i>EITHER:</i> Commence division by $x^2 - x + 1$ and reach a partial quotient of the form $x^2 + kx$	M1
	Obtain quotient $x^2 + 3x + 2$	A1
	<i>Either</i> Set remainder identically equal to zero and solve for <i>a</i> or fo multiply given divisor and found quotient and obtain <i>a</i> or <i>b</i>	r <i>b</i> , <i>or</i> M1
	Obtain $a = 1$	A1
	Obtain $b = 2$	A1
	<i>OR</i> : Assume an unknown factor $x^2 + Bx + C$ and obtain an equation in <i>B</i> and/or <i>C</i>	M1
	Obtain $B = 3$ and $A = 2$	A1
	<i>Either</i> Use equations to obtain <i>a</i> or <i>b</i> or multiply given divisor and found factor to obtain <i>a</i> or <i>b</i>	M1
	Obtain $a = 1$	A1
	Obtain $b = 2$	A1
		5

Question	Answer	Marks
5(i)	State or imply $dx = -2\cos\theta\sin\theta \mathrm{d}\theta$, or equivalent	B1
	Substitute for <i>x</i> and d <i>x</i> , and use Pythagoras	M1
	Obtain integrand $\pm 2\cos^2\theta$	A1
	Justify change of limits and obtain given answer correctly	A1
		4
5(ii)	Obtain indefinite integral of the form $a\theta + b\sin 2\theta$	M1*
	Obtain $\theta + \frac{1}{2}\sin 2\theta$	A1
	Use correct limits correctly	M1(dep*)
	Obtain answer $\frac{1}{6}\pi$ with no errors seen	A1
		4

Question	Answer	Marks
6(i)	Separate variables correctly and integrate at least one side	B1
	Obtain term ln x	B1
	Obtain term $-\frac{2}{3}kt\sqrt{t}$, or equivalent	B1
	Evaluate a constant, or use limits $x = 100$ and $t = 0$, in a solution containing terms $a \ln x$ and $b t \sqrt{t}$	M1
	Obtain correct solution in any form, e.g. $\ln x = -\frac{2}{3}kt\sqrt{t} + \ln 100$	A1
		5
6(ii)	Substitute $x = 80$ and $t = 25$ to form equation in k	M1
	Substitute $x = 40$ and eliminate k	M1
	Obtain answer $t = 64.1$	A1
		3

Question	Answer	Marks
7(i)	Use quadratic formula, or completing the square, or the substitution $z = x + iy$ to find a root, using $i^2 = -1$	M1
	Obtain a root, e.g. $-\sqrt{6} - \sqrt{2i}$	A1
	Obtain the other root, e.g. $-\sqrt{6} - \sqrt{2i}$	A1
		3
7(ii)	Represent both roots in relatively correct positions	B1ft
		1
7(iii)	State or imply correct value of a relevant length or angle, e.g. <i>OA</i> , <i>OB</i> , <i>AB</i> , angle between <i>OA</i> or <i>OB</i> and the real axis	B1ft
	Carry out a complete method for finding angle <i>OAB</i>	M1
	Obtain $AOB = 60^{\circ}$ correctly	A1
		3
7(iv)	Give a complete justification of the given statement	B1
		1

Question	Answer	Marks
8(i)	Integrate by parts and reach $lxe^{-\frac{1}{2}x} + m\int e^{-\frac{1}{2}x} dx$	M1*
	Obtain $-2xe^{-\frac{1}{2}x} + 2\int e^{-\frac{1}{2}x} dx$	A1
	Complete the integration and obtain $-2xe^{-\frac{1}{2}x} - 4e^{-\frac{1}{2}x}$, or equivalent	A1
	Having integrated twice, use limits and equate result to 2	M1(dep*)
	Obtain the given equation correctly	A1
		5
8(ii)	Calculate values of a relevant expression or pair of expressions at $a = 3$ and $a = 3.5$	M1
	Complete the argument correctly with correct calculated values	A1
		2
8(iii)	Use the iterative formula $a_{n+1} = 2\ln(a_n + 2)$ correctly at least once	M1
	Obtain final answer 3.36	A1
	Show sufficient iterations to 4 d.p. to justify 3.36 to 2 d.p., or show there is a sign change in the interval (3.355, 3.365)	A1
		3

Question	Answer	Marks
9(i)	State or imply the form $A + \frac{B}{x-1} + \frac{C}{3x+2}$	B1
	State or obtain $A = 4$	B1
	Use a correct method to obtain a constant	M1
	Obtain one of $B = 3$, $C = -1$	A1
	Obtain the other value	A1
		5
9(ii)	Use correct method to find the first two terms of the expansion of $(x-1)^{-1}$ or $(3x+2)^{-1}$, or equivalent	M1
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	A1ft + A1ft
	Add the value of A to the sum of the expansions	M1
	Obtain final answer $\frac{1}{2} - \frac{9}{4}x - \frac{33}{8}x^2$	A1
		5

Question	Answer	Marks
10(a)	<i>EITHER</i> : Find \overrightarrow{PQ} (or \overrightarrow{QP}) for a general point Q on l , e.g. $(1+\mu)\mathbf{i} + (4+2\mu)\mathbf{j} + (4+3\mu)\mathbf{k}$	B1
	Calculate the scalar product of \overrightarrow{PQ} and a direction vector for <i>l</i> and equate to zero	M1
	Solve and obtain correct solution e.g. $\mu = -\frac{3}{2}$	A1
	Carry out method to calculate PQ	M1
	Obtain answer 1.22	A1
	<i>OR</i> 1: Find \overrightarrow{PQ} (or \overrightarrow{QP}) for a general point Q on l	B1
	Use a correct method to express PQ^2 (or PQ) in terms of μ	M1
	Obtain a correct expression in any form	A1
	Carry out a complete method for finding its minimum	M1
	Obtain answer 1.22	A1
	<i>OR2</i> : Calling (4, 2, 5) <i>A</i> , state \overrightarrow{PA} (or \overrightarrow{AP}) in component form, e.g. i +	$-4\mathbf{j} + 4\mathbf{k}$ B1
	Use a scalar product to find the projection of \overrightarrow{PA} (or \overrightarrow{AP}) on l	M1
	Obtain correct answer $21/\sqrt{14}$, or equivalent	A1
	Use Pythagoras to find the perpendicular	M1
	Obtain answer 1.22	A1
	OR3: State \overrightarrow{PA} (or \overrightarrow{AP}) in component form	B1
	Calculate vector product of \overrightarrow{PA} and a direction vector for l	M1
	Obtain correct answer, e.g. $4\mathbf{i} + \mathbf{j} - 2\mathbf{k}$	A1
	Divide modulus of the product by that of the direction vector	M1
	Obtain answer 1.22	A1
		5

Question	Answer	Marks
10(ii)	<i>EITHER</i> : Use scalar product to obtain a relevant equation in <i>a</i> , <i>b</i> and <i>c</i> , e.g. $a + 2b + 3c = 0$	B1
	Obtain a second relevant equation, e.g. using $\overrightarrow{PA} a + 4b + 4c = 0$, and solve for one ratio	M1
	Obtain $a: b: c = 4: 1: -2$, or equivalent	A1
	Substitute a relevant point and values of a , b , c in general equation and find d	M1
	Obtain correct answer, $4x + y - 2z = 8$, or equivalent	A1
	OR1: Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}) \times (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$	M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $4\mathbf{i} + \mathbf{j} - 2\mathbf{k}$	A1
	Substitute a relevant point and find <i>d</i>	M1
	Obtain correct answer, $4x + y - 2z = 8$, or equivalent	A1
	<i>OR</i> 2: Using a relevant point and relevant vectors form a 2-parameter equation for the plane	M1
	State a correct equation, e.g. $\mathbf{r} = 4\mathbf{i} + 2\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}) + \mu(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$	A1
	State three correct equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ	A1
	Eliminate λ and μ	M1
	Obtain correct answer $4x + y - 2z = 8$, or equivalent	A1
		5