Cambridge International AS Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	Either		
	State or imply non-modular inequality $(3x-2)^2 < (x+5)^2$ or corresponding equation or pair of linear equations	B1	
	Attempt solution of 3-term quadratic equation or of 2 linear equations	M1	
	Obtain critical values $-\frac{3}{4}$ and $\frac{7}{2}$	A1	
	State answer $-\frac{3}{4} < x < \frac{7}{2}$	A1	
	Or		
	Obtain critical value $\frac{7}{2}$ from graph, inspection, equation	B1	
	Obtain critical value $-\frac{3}{4}$ similarly	B2	
	State answer $-\frac{3}{4} < x < \frac{7}{2}$	B1	
		4	

Cambridge International AS Level – Mark Scheme **PUBLISHED**

May/June 2018

9709 s18 ms 23

Question	Answer	Marks	Guidance
2(i)	Differentiate to obtain form $\frac{k_1}{2x+9} - \frac{k_2}{x}$	M1	
	Obtain correct $\frac{6}{2x+9} - \frac{2}{x}$	A1	
	Equate first derivative to zero and attempt solution to $x =$	M1	Dependent on previous M1
	Obtain $x = 9$	A1	
		4	
2(ii)	Use appropriate method for determining nature of stationary point	M1	Second derivative or gradient or value of <i>y</i>
	Conclude minimum with no errors seen	A1	
		2	

Question	Answer	Marks	Guidance
3(i)	Carry out division and reach at least partial quotient of form $x^2 + kx$	M1	
	Obtain quotient $x^2 - 2x + 2$	A1	
	Obtain remainder 1	A1	AG; necessary detail needed and all correct
		3	

Cambridge International AS Level – Mark Scheme **PUBLISHED**

May/June 2018

9709_s18_ms_23

Question	Answer	Marks	Guidance
3(ii)	State equation as $(x^2 + 6)(x^2 - 2x + 2) = 0$	B1 FT	Following their 3-term quotient from part (i)
	Calculate discriminant of 3-term quadratic or equivalent	M1	
	Obtain -4 and state no root, also referring to no root from $x^2 + 6$ factor	A1	AG; necessary detail needed
		3	

Question	Answer	Marks	Guidance
4(i)	Use $2\ln(2x) = \ln(4x^2)$	B1	
	Use law for addition or subtraction of logarithms	M1	
	Obtain correct equation $\frac{4x^2}{x+3} = 16$ or equivalent	A1	With no logarithms involved
	Solve 3-term quadratic equation	M1	Dependent on previous M1
	Conclude with $x = 6$ and, finally, no other solutions	A1	
		5	
4(ii)	Apply logarithms and use power law for $2^{u} = k$ or $2^{u+1} = 2k$ where $k > 0$	M1	
	Obtain 2.585	A1	
		2	

Cambridge International AS Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5	Use product rule to differentiate first term obtaining form $k_1 y^2 \frac{dy}{dx} \sin 2x + k_2 y^3 \cos 2x$	M1	
	Obtain correct $3y^2 \frac{dy}{dx} \sin 2x + 2y^3 \cos 2x$	A1	
	State $3y^2 \frac{dy}{dx} \sin 2x + 2y^3 \cos 2x + 4\frac{dy}{dx} = 0$	A1	
	Identify $x = 0$, $y = 2$ as relevant point	B1	
	Find equation of tangent through $(0, 2)$ with numerical gradient	M1	Dependent on previous M1
	Obtain $y = -4x + 2$ or equivalent	A1	
		6	

Cambridge International AS Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
-			
6(i)	Rewrite integrand as $1 + 2e^{\frac{1}{2}x} + e^x$	B1	
	Integrate to obtain form $x + k_1 e^{\frac{1}{2}x} + k_2 e^x$	M1	
	Obtain $x + 4e^{\frac{1}{2}x} + e^x$	A1	
	Use limits to obtain $a + 4e^{\frac{1}{2}a} + e^a - 5 = 10$	A1	
	Rearrange as far as $e^{\frac{1}{2}a} = \dots$ including use of $4e^{\frac{1}{2}a} + e^a = e^{\frac{1}{2}a}(4 + e^{\frac{1}{2}a})$	M1	
	Confirm $a = 2\ln\left(\frac{15-a}{4+e^{\frac{1}{2}a}}\right)$	A1	AG; necessary detail needed
		6	
6(ii)	Consider sign of $a - 2\ln\left(\frac{15-a}{4+e^{\frac{1}{2}a}}\right)$ for 1.5 and 1.6 or equivalent	M1	
	Obtain -0.08 and 0.06 or equivalents and justify conclusion	A1	
		2	
6(iii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.56	A1	
	Show sufficient iterations to 5 sf to justify answer or show sign change in interval (1.555, 1.565)	A1	
		3	

Cambridge International AS Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(i)	Express cosec ${}^{2}2x$ as $\frac{1}{4\sin^{2}x\cos^{2}x}$	B1	
	Attempt to express LHS in terms of $\sin x$ and $\cos x$ only	M1	Must be using correct working for M1
	Obtain $\frac{2 \times 2 \sin^2 x}{4 \sin^2 x \cos^2 x}$ or equivalent and hence $\sec^2 x$	A1	AG; necessary detail needed
		3	
7(ii)	Express equation as $1 + \tan^2 x = \tan x + 21$	B1	
	Solve 3-term quadratic equation for tan <i>x</i>	M1	
	Obtain $\tan x = 5$ and hence $x = 1.37$	A1	Or greater accuracy 1.3734
	Obtain $\tan x = -4$ and hence $x = 1.82$	A1	Or greater accuracy 1.8157
		4	
7(iii)	Use $x = 2y + 1$	B1	
	Identify integral as of form $\int \sec^2(ay+b) dy$	M1	Condone absence of or error with dy
	Obtain $\frac{1}{2}$ tan $(2y+1)+c$	A1	
		3	