Question	Answer	Marks	Guidance
1	$\underline{\text { Either }}$	B1	
	State or imply non-modular inequality $(3 x-2)^{2}<(x+5)^{2}$ or corresponding equation or pair of linear equations	M1	
	Attempt solution of 3-term quadratic equation or of 2 linear equations	A1	
	Obtain critical values $-\frac{3}{4}$ and $\frac{7}{2}$	A1	
	State answer $-\frac{3}{4}<x<\frac{7}{2}$	B1	
	$\underline{\text { Or }}$	B2	
	Obtain critical value $\frac{7}{2}$ from graph, inspection, equation	B1	
	Obtain critical value $-\frac{3}{4}$ similarly	4	

Question	Answer	Marks	Guidance
2(i)	Differentiate to obtain form $\frac{k_{1}}{2 x+9}-\frac{k_{2}}{x}$	M1	
	Obtain correct $\frac{6}{2 x+9}-\frac{2}{x}$	A1	
	Equate first derivative to zero and attempt solution to $x=\ldots$	M1	Dependent on previous M1
	Obtain $x=9$	A1	
		4	
2(ii)	Use appropriate method for determining nature of stationary point	M1	Second derivative or gradient or value of y
	Conclude minimum with no errors seen	A1	
		2	

Question	Answer	Marks	
3 (i)	Carry out division and reach at least partial quotient of form $x^{2}+k x$	M1	
	Obtain quotient $x^{2}-2 x+2$	$\mathbf{A 1}$	
	Obtain remainder 1	$\mathbf{A 1}$	AG; necessary detail needed and all correct
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$3($ ii)	State equation as $\left(x^{2}+6\right)\left(x^{2}-2 x+2\right)=0$	B1 FT	Following their 3-term quotient from part (i)
	Calculate discriminant of 3-term quadratic or equivalent	M1	
	Obtain -4 and state no root, also referring to no root from $x^{2}+6$ factor	A1	AG; necessary detail needed
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	Use $2 \ln (2 x)=\ln \left(4 x^{2}\right)$	B1	
	Use law for addition or subtraction of logarithms	M1	
	Obtain correct equation $\frac{4 x^{2}}{x+3}=16$ or equivalent	A1	With no logarithms involved
	Solve 3-term quadratic equation	M1	Dependent on previous M1
	Conclude with $x=6$ and, finally, no other solutions	A1	
		$\mathbf{5}$	
$4($ ii)	Apply logarithms and use power law for $2^{u}=k$ or $2^{u+1}=2 k$ where $k>0$	M1	
	Obtain 2.585	A1	

Question	Answer	Marks	Guidance
5	Use product rule to differentiate first term obtaining form $k_{1} y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x} \sin 2 x+k_{2} y^{3} \cos 2 x$	M1	
	Obtain correct $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x} \sin 2 x+2 y^{3} \cos 2 x$	A1	
	State $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x} \sin 2 x+2 y^{3} \cos 2 x+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	A1	
	Identify $x=0, y=2$ as relevant point	B1	
	Find equation of tangent through $(0,2)$ with numerical gradient	M1	Dependent on previous M1
	Obtain $y=-4 x+2$ or equivalent	A1	
		6	

Question	Answer	Marks	Guidance
6(i)	Rewrite integrand as $1+2 \mathrm{e}^{\frac{1}{2} x}+\mathrm{e}^{x}$	B1	
	Integrate to obtain form $x+k_{1} \mathrm{e}^{\frac{1}{2} x}+k_{2} \mathrm{e}^{x}$	M1	
	Obtain $x+4 \mathrm{e}^{\frac{1}{2} x}+\mathrm{e}^{x}$	A1	
	Use limits to obtain $a+4 \mathrm{e}^{\frac{1}{2} a}+\mathrm{e}^{a}-5=10$	A1	
	Rearrange as far as $\mathrm{e}^{\frac{1}{2} a}=\ldots$ including use of $4 \mathrm{e}^{\frac{1}{2} a}+\mathrm{e}^{a}=\mathrm{e}^{\frac{1}{2} a}\left(4+\mathrm{e}^{\frac{1}{2} a}\right)$	M1	
	Confirm $a=2 \ln \left(\frac{15-a}{4+\mathrm{e}^{\frac{1}{2} a}}\right)$	A1	AG; necessary detail needed
		6	
6(ii)	Consider sign of $a-2 \ln \left(\frac{15-a}{4+\mathrm{e}^{\frac{1}{2} a}}\right)$ for 1.5 and 1.6 or equivalent	M1	
	Obtain $-0.08 \ldots$ and $0.06 \ldots$ or equivalents and justify conclusion	A1	
		2	
6(iii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.56	A1	
	Show sufficient iterations to 5 sf to justify answer or show sign change in interval $(1.555,1.565)$	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	Express $\operatorname{cosec}^{2} 2 x$ as $\frac{1}{4 \sin ^{2} x \cos ^{2} x}$	B1	
	Attempt to express LHS in terms of $\sin x$ and $\cos x$ only	M1	Must be using correct working for M1
	Obtain $\frac{2 \times 2 \sin ^{2} x}{4 \sin ^{2} x \cos ^{2} x}$ or equivalent and hence $\sec ^{2} x$	A1	AG; necessary detail needed
		3	
7(ii)	Express equation as $1+\tan ^{2} x=\tan x+21$	B1	
	Solve 3-term quadratic equation for $\tan x$	M1	
	Obtain $\tan x=5$ and hence $x=1.37$	A1	Or greater accuracy 1.3734...
	Obtain $\tan x=-4$ and hence $x=1.82$	A1	Or greater accuracy 1.8157...
		4	
7(iii)	Use $x=2 y+1$	B1	
	Identify integral as of form $\int \sec ^{2}(a y+b) \mathrm{d} y$	M1	Condone absence of or error with $\mathrm{d} y$
	Obtain $\frac{1}{2} \tan (2 y+1)+c$	A1	
		3	

