Cambridge International AS Level – Mark Scheme **PUBLISHED**

May/June 2018

9709_s18_ms_21

Question	Answer	Marks	Guidance
1	Attempt to solve quadratic equation in e^x	M1	Either directly or using substitution $u = e^x$
	Obtain $e^x = \frac{1}{3}$, $e^x = 27$	A1	$e^x = \frac{1}{3}$, $e^x = 27$ may be implied if $u = e^x$ is stated
	Use correct process at least once for solving $e^x = c$ where $c > 0$	M1	
	Obtain -ln3 from a correct solution	A1	Condone use of $x = e^x$
	Obtain 3ln3 from a correct solution	A1	
		5	

Cambridge International AS Level – Mark Scheme **PUBLISHED**

May/June 2018

970	С	9	S	1	8	ms	21

Question	Answer	Marks	Guidance
2	Either		
	State or imply equation $\ln y = \ln A + \ln B \ln x$	B1	
	Equate gradient of line to ln B	M1	
	Obtain $\ln B = 1.6486$ and hence $B = 5.2$	A1	
	Substitute appropriate values to find ln A	M1	
	Obtain $\ln A = 1.2809$ and hence $A = 3.6$	A1	
	Or		
	State or imply equation $\ln y = \ln A + \ln B \ln x$	B1	
	Use given coordinates to obtain a correct equation	B1	Equations are $4.908 = \ln A + 2.2 \ln B$ and $11.008 = \ln A + 5.9 \ln B$
	Use given coordinates to obtain a second correct equation and attempt to solve both equations simultaneously to obtain at least one of the unknowns $\ln A$ or $\ln B$	M1	
	Obtain $\ln B = 1.6486$ and hence $B = 5.2$	A1	
	Obtain $\ln A = 1.2809$ and hence $A = 3.6$	A1	

Question	Answer	Marks	Guidance
2	Or		
	Use given coordinates to obtain a correct equation	B1	Equations are $e^{4.908} = AB^{2.2}$ and $e^{11.008} = AB^{5.9}$
	Use given coordinates to obtain a second correct equation	B1	
	Solve to obtain B	M1	M mark dependent on both previous B marks
	B = 5.2	A1	
	<i>A</i> = 3.6	A1	
		5	

Question	Answer	Marks	Guidance
3	Rewrite integrand as $4e^{2x} + 4e^{-x}$	B1	
	Integrate to obtain form $k_1 e^{2x} + k_2 e^{-x}$ where $k_1 \neq 4, k_2 \neq 4$	M1	
	Obtain correct $2e^{2x} - 4e^{-x}$	A1	
	Apply limits correctly, retaining exactness	M1	Dependent on previous M1
	Obtain $2e^4 - 4e^{-2} + 2$ or exact similarly simplified equivalent	A1	
		5	

Question	Answer	Marks	Guidance
4(i)	Use quotient rule or equivalent	M1	Obtaining two terms in numerator and $(2x+1)^2$ in denominator for a quotient
	Obtain correct $\frac{\frac{5}{x}(2x+1)-10\ln x}{(2x+1)^2}$ or equivalent, or $\frac{5}{x}(2x+1)^{-1}-10\ln x(2x+1)^{-2}$ or equivalent	A1	Obtaining one term with $(2x+1)^{-1}$ oe and a second term with $(2x+1)^{-2}$ oe for a product Condone poor use of brackets if recovered later
	Substitute $x = 1$ to obtain $\frac{15}{9}$ or $\frac{5}{3}$ or equivalent, www	A1	
		3	
4(ii)	Equate numerator to zero and attempt relevant arrangement	M1	For M1, need to see at least one line of working after either $10 + \frac{5}{x} - 10 \ln x = 0$ or their numerator (which must have at least 2 terms, one involving $\ln x$) = 0
	Confirm $x = \frac{x + 0.5}{\ln x}$	A1	AG; necessary detail needed
		2	
4(iii)	Use iteration process correctly at least once	M1	
	Obtain final answer 3.181	A1	
	Show sufficient iterations to 6 sf to justify answer or show sign change in interval (3.1805, 3.1815)	A1	
		3	

Cambridge International AS Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
5(i)	Obtain $\frac{dx}{d\theta} = -4\sin 2\theta + 3\cos \theta$	B1	B1 may be implied
	Use $\frac{dy}{dx} = \frac{dy}{d\theta} / \frac{dx}{d\theta}$ in terms of θ or with 1 already substituted	M1	
	Obtain or imply $\frac{dy}{dx} = \frac{-3\sin\theta}{-4\sin2\theta + 3\cos\theta}$	A1	
	Substitute 1 to obtain 1.25	A1	Or greater accuracy 1.252013
		4	
5(ii)	Equate denominator of first derivative to zero	M1	
	Use $\sin 2\theta = 2\sin\theta\cos\theta$	A1	
	Obtain $\sin\theta = \frac{3}{8}$	A1	
		3	

Question	Answer	Marks				Guidance	•		
6(i)	Substitute $x = -2$ and equate to zero	M1							
	Obtain $-8+4a-28+a+1=0$ or equivalent and hence $a = 7$	A1							
	Attempt <u>either</u> division by $x + 2$ and reach partial quotient	M1	Synt	hetic divis	sion:				_
	$x^2 + kx$, where k is numeric <u>or</u> use of identity <u>or</u> inspection <u>or</u> synthetic			-2	1	7	14	8	
						-2	-10	-8	
					1	5	4	0	
	Obtain quotient $x^2 + 5x + 4$ soi	A1							
	Conclude with $(x+1)(x+2)(x+4)$	A1							
		5							

Cambridge International AS Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance			
6(ii)	Either					
	State $(2x+1)(2x+2)(2x+4) = 3(x+1)(x+2)(x+4)$	M1	Following their complete factorised form			
	Obtain $x = -1$ and $x = -2$	A1	Calculator not permitted so necessary detail needed			
	Cancel common factors to obtain linear equation or factorise to find corresponding factor	M1				
	Obtain $x = \frac{8}{5}$ or equivalent	A1				
	Or					
	State $(2x+1)(2x+2)(2x+4) = 3(x+1)(x+2)(x+4)$ or $(2x)^3 + 7(2x)^2 + 14(2x) + 8 = 3(x^3 + 7x^2 + 14x + 8)$	M1	Following their completed factorised form, Must see $8x^3$ and $28x^2$ if using second statement without bracketed terms in $2x$			
	Expand and simplify to obtain $5x^3 + 7x^2 - 14x - 16 = 0$	A1	Must be equated to 0 for A1			
	Attempt complete factorisation of cubic with leading term $5x^3$ (may make	M1	Synthetic division:			
	use of synthetic division)		-2 5 7 -14 -16			
			-10 6 16			
			5 -3 -8 0			
	Obtain $(x+1)(x+2)(5x-8) = 0$ and conclude $x = -1$, $x = -2$, $x = \frac{8}{5}$	A1	Calculator not permitted so necessary detail needed			
		4				

Question	Answer	Marks	Guidance
7(i)	State $R = \sqrt{29}$ or 5.385	B1	
	Use appropriate trigonometry to find α	M1	Allow M1 for $\tan \alpha = \pm \frac{2}{5}$ or $\pm \frac{5}{2}$ oe
	Obtain 0.3805 with no errors seen	A1	Or greater accuracy 0.3805063
		3	
7(ii)	State that equation is $5\cos\theta - 2\sin\theta = 4$	B1	
	Evaluate $\cos^{-1}(k/R) - \alpha$ to find one value of θ	M1	Allow M1 from their $\sqrt{29}\cos(\theta \pm \alpha)$
	Obtain 0.353	A1	Or greater accuracy 0.35307
	Carry out correct method to find second value	M1	
	Obtain 5.17 and no extra solutions in the range	A1	Or greater accuracy 5.16909
			If working consistently in degrees, then no A marks are available, B1, M1, M1 max
		5	
7(iii)	State integrand as $\frac{1}{29}\sec^2(\frac{1}{2}x+0.3805)$	B1 FT	Following their answer from part (i), must be in the form $R\cos(\theta \pm \alpha)$
	Integrate to obtain form $k \tan(\frac{1}{2}x + \text{their } \alpha)$	M1	
	Obtain $\frac{2}{29} \tan(\frac{1}{2}x + 0.3805) + c$	A1	
		3	