Question	Answer	Marks	Guidance
1	$[3]\left[(x-2)^{2}\right][-5]$	B1B1B1	OR $a=3, b=-2, \mathrm{c}=-5.1$ st mark is dependent on the form $(x+a)^{2}$ following 3
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	${ }_{5} \mathrm{C}_{3} x^{2}\left(\frac{-2}{x}\right)^{3}$ SOI	B2,1,0	-80 www scores B3. Accept ${ }_{5} \mathrm{C}_{2}$.
	-80 Accept $\frac{-80}{x}$	$\mathbf{B 1}$	+80 without clear working scores SCB1
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3	$\left[\frac{a\left(1-r^{n}\right)}{1-r}\right][\div]\left[\frac{a}{1-r}\right]$	M1M1	Correct formulae used with/without $r=0.99$ or $n=100$.
		DM1	Allow numerical a (M1M1). 3rd M1 is for division $\frac{S_{n}}{S_{\infty}}$ (or ratio) SOI
	$1-0.99^{100} \text { SOI OR } \frac{63(a)}{100(a)} \text { SOI }$	A1	Could be shown multiplied by 100(\%). Dep. on DM1
	63(\%) Allow 63.4 or 0.63 but not 2 infringements (e.g. $0.634,0.63 \%$)	A1	$n=99$ used scores Max M3. Condone $a=0.99$ throughout $S_{n}=S_{\infty}$ (without division shown) scores $2 / 5$
		5	

Question	Answer	Marks	Guidance
4	$\mathrm{f}(x)=\left[\frac{(3 x-1)^{\frac{2}{3}}}{\frac{2}{3}}\right][\div 3](+c)$	B1B1	
	$1=\frac{8^{\frac{2}{3}}}{2}+c$	M1	Sub $y=1, x=3$ Dep. on attempt to integrate and c present
	$c=-1 \rightarrow y=\frac{1}{2}(3 x-1)^{\frac{2}{3}}-1 \mathrm{SOI}$	A1	
	When $x=0, y=\frac{1}{2}(-1)^{\frac{2}{3}}-1 \quad=-\frac{1}{2}$	DM1A1	Dep. on previous M1
		6	

Question	Answer		Marks	Guidance
5	Angle $A O C=\frac{6}{5}$ or 1.2		M1	$\text { Allow } 68.8^{\circ} \text {. Allow } \frac{5}{6}$
	$\mathrm{AB}=5 \times \tan$ (their 1.2$)$ OR by e.g. Sine Rule	Expect 12.86	DM1	$\text { OR } O B=\frac{5}{\cos \text { their } 1.2} \text {. Expect } 13.80$
	Area $\triangle O A B=\frac{1}{2} \times 5 \times$ their 12.86	Expect 32.15	DM1	$\text { OR } \frac{1}{2} \times 5 \times \text { their } O B \times \sin \text { their } 1.2$
	Area sector $\frac{1}{2} \times 5^{2} \times$ their 1.2	Expect 15	DM1	All DM marks are dependent on the first M1
	Shaded region $=32.15-15=17.2$		A1	Allow degrees used appropriately throughout. 17.25 scores A0
			5	

Question	Answer	Marks	Guidance
6(i)	Gradient, m , of $A B=\frac{3 k+5-(k+3)}{k+3-(-3 k-1)}$ OE $\left(=\frac{2 k+2}{4 k+4}\right)=\frac{1}{2}$	M1A1	Condone omission of brackets for M mark
		2	
6 (ii)	$\begin{aligned} & \text { Mid-pt }=\left[\frac{1}{2}(-3 k-1+k+3), \frac{1}{2}(3 k+5+k+3)\right]= \\ & \left(\frac{-2 k+2}{2}, \frac{4 k+8}{2}\right) \mathrm{SOI} \end{aligned}$	B1B1	B1 for $\frac{-2 k+2}{2}$, B1 for $\frac{4 k+8}{2}$ (ISW) or better, i.e. $(-k+1,2 k+4)$
	Gradient of perpendicular bisector is $\frac{-1}{\text { their } m}$ SOI Expect -2	M1	Could appear in subsequent equation and/or could be in terms of k
	Equation: $y-(2 k+4)=-2[x-(-k+1)]$ OE	DM1	Through their mid-point and with their $\frac{-1}{m}$ (now numerical)
	$y+2 x=6$	A1	Use of numerical k in (ii) throughout scores $\mathrm{SC} 2 / 5$ for correct answer
		5	

Question	Answer	Marks	Guidance
7(a)(i)	$\frac{\tan ^{2} \theta-1}{\tan ^{2} \theta+1}=\frac{\frac{\sin \theta^{2}}{\cos \theta^{2}}-1}{\frac{\sin \theta^{2}}{\cos \theta^{2}}+1}$	M1	
	$=\frac{\sin \theta^{2}-\cos \theta^{2}}{\sin \theta^{2}+\cos \theta^{2}}$	A1	multiplying by $\cos \theta^{2}$ Intermediate stage can be omitted by multiplying directly by $\cos \theta^{2}$
	$=\sin \theta^{2}-\cos \theta^{2}=\sin \theta^{2}-\left(1-\sin \theta^{2}\right)=2 \sin ^{2} \theta-1$	A1	Using $\sin \theta^{2}+\cos \theta^{2}=1$ twice. Accept $a=2, b=-1$
	ALT $1 \frac{\sec ^{2} \theta-2}{\sec ^{2} \theta}$	M1	ALT $2 \frac{\tan ^{2} \theta-1}{\sec ^{2} \theta}$
	$1-\frac{2}{\sec ^{2} \theta}=1-2 \cos ^{2} \theta$	A1	$\left(\tan ^{2} \theta-1\right) \cos ^{2} \theta$
	$1-2\left(1-\sin ^{2} \theta\right)=2 \sin ^{2} \theta-1$	A1	$\sin ^{2} \theta-\cos ^{2} \theta=\sin ^{2} \theta-\left(1-\sin ^{2} \theta\right)=2 \sin ^{2} \theta-1$
		3	
7(a)(ii)	$2 \sin ^{2} \theta-1=\frac{1}{4} \rightarrow \sin \theta=(\pm) \sqrt{\frac{5}{8}} \text { or }(\pm) 0.7906$	M1	$\text { OR } \frac{t^{2}-1}{t^{2}+1}=\frac{1}{4} \rightarrow 3 t^{2}=5 \rightarrow t=(\pm) \sqrt{\frac{5}{3}} \text { or } t=(\pm) 1.2910$
	$\theta=-52.2$	A1	
		2	

Question	Answer	Marks	Guidance
7(b)(i)	$\sin x=2 \cos x \rightarrow \tan x=2$	M1	$\text { Or } \sin x=\sqrt{\frac{4}{5}} \text { or } \cos x=\sqrt{\frac{1}{5}}$
	$x=1.11$ with no additional solutions	A1	Accept 0.352π or 0.353π. Accept in co-ord form ignoring y co-ord
		2	
7(b)(ii)	Negative answer in range $-1<y<-0.8$	B1	
	-0.894 or -0.895 or -0.896	B1	
		2	

Question	Answer	Marks	Guidance
8(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-18 x+24$	M1A1	Attempt to differentiate. All correct for A mark
	$3 x^{2}-18 x+24=-3$	M1	Equate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to -3
	$x=3$	A1	
	$y=6$	A1	
	$y-6=-3(x-3)$	A1FT	FT on their A. Expect $y=-3 x+15$
		6	
8(ii)	$(3)(x-2)(x-4)$ SOI or $x=2,4$ Allow $(3)(x+2)(x+4)$	M1	Attempt to factorise or solve. Ignore a RHS, e.g. $=0$ or >0, etc.
	Smallest value of k is 4	A1	Allow $k \geqslant 4$. Allow $k=4$. Must be in terms of k
		2	

Question	Answer	Marks	Guidance
9(i)	$\mathbf{O E}=\frac{2}{10}(8 \mathbf{i}+6 \mathbf{j})=1.6 \mathbf{i}+1.2 \mathbf{j} \quad \mathbf{A G}$	M1A1	Evidence of $O B=10$ or other valid method (e.g. trigonometry) is required
		2	
9(ii)	$\mathbf{O D}=1.6 \mathrm{i}+1.2 \mathbf{j}+7 \mathrm{k}$	B1	Allow reversal of one or both of OD, BD.
	$\mathbf{B D}=-8 \mathbf{i}-6 \mathbf{j}+1.6 \mathbf{i}+1.2 \mathbf{j}+7 \mathrm{k}$ OE $=-6.4 \mathbf{i}-4.8 \mathbf{j}+7 \mathbf{k}$	M1A1	For M mark allow sign errors. Also if 2 out of 3 components correct
	Correct method for $\pm \mathbf{O D} . \pm \mathbf{B D}$ (using their answers)	M1	Expect $1.6 \times-6.4+1.2 \times-4.8+49=33$ or $\frac{825}{25} 825 / 25$.
	Correct method for $\|\mathbf{O D}\|$ or $\|\mathbf{B D}\|$ (using their answers)	M1	Expect $\sqrt{1.6^{2}+1.2^{2}+7^{2}}$ or $\sqrt{6.4^{2}+4.8^{2}+7^{2}}=\sqrt{ } 53$ or $\sqrt{ } 113$
	$\operatorname{Cos} B D O=\text { their } \frac{\mathbf{O D} \cdot \mathbf{B D}}{\|\mathbf{O D}\| \times\|\mathbf{B D}\|}$	DM1	Expect $\frac{33}{77.4}$. Dep. on all previous M marks and either B 1 or A 1
	64.8 ${ }^{\circ}$ Allow 1.13(rad)	A1	Can't score A1 if 1 vector only is reversed unless explained well
		7	

Question	Answer	Marks	Guidance
10(i)	Smallest value of c is 2. Accept 2, $c=2, c \geqslant 2$. Not in terms of x	B1	Ignore superfluous working, e.g. $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2$
		1	
10(ii)	$y=(x-2)^{2}+2 \rightarrow x-2=(\pm) \sqrt{y-2} \rightarrow x=(\pm) \sqrt{y-2}+2$	M1	Order of operations correct. Allow sign errors
	$\mathrm{f}^{-1}(x)=\sqrt{x-2}+2$	A1	Accept $y=\sqrt{x-2}+2$
	Domain of f^{-1} is $x \geqslant 6$. Allow $\geqslant 6$.	B1	Not $\mathrm{f}^{-1}(x) \geqslant 6$. Not $\mathrm{f}(x) \geqslant 6$. Not $y \geqslant 6$
		3	
10(iii)	$\left[(x-2)^{2}+2-2\right]^{2}+2=51$ SOI Allow 1 term missing for M mark Or $\left(x^{2}-4 x+6\right)^{2}-4\left(x^{2}-4 x+6\right)+6=51$	M1A1	ALT. $\mathrm{f}(x)=\mathrm{f}^{-1}(51)(\mathrm{M} 1)=\sqrt{51-2}+2$ (A1)
	$(x-2)^{4}=49 \text { or }\left(x^{2}-4 x+4\right)^{2}=49$ OR $x^{4}-8 x^{3}+24 x^{2}-32 x-33=0$ often implied by next line	A1	$(x-2)^{2}+2=\sqrt{49}+2$ OR $\mathrm{f}(x)=9$
	$(x-2)^{2}=(\pm) 7$ OR $x^{2}-4 x-3=0$. Ignore $x^{2}-4 x+11=0$	A1	$(x-2)^{2}=7$ OR $x=\mathrm{f}^{-1}(9)$
	$x=2+\sqrt{ } 7$ only CAO $x=2+\sqrt[4]{49}$ scores $3 / 5$	A1	$x=2+\sqrt{7}$
		5	

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2(x+1)-(x+1)^{-2}$	B1	
	Set $=0$ and obtain $2(x+1)^{3}=1$ convincingly www \quad AG	B1	
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2+2(x+1)^{-3} \mathrm{www}$	B1	
	Sub, e.g., $(x+1)^{-3}=2$ OE or $x=\left(\frac{1}{2}\right)^{\frac{1}{3}}-1$	M1	Requires exact method - otherwise scores M0
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6$ CAO www	A1	and exact answer - otherwise scores A0
		5	

Question	Answer	Marks	Guidance
11(ii)	$y^{2}=(x+1)^{4}+(x+1)^{-2}+2(x+1) \mathrm{SOI}$	B1	OR $y^{2}=\left(x^{4}+4 x^{3}+6 x^{2}+4 x+1\right)+(2 x+2)+(x+1)^{-2}$
	$\begin{aligned} & (\pi) \int y^{2} d x=(\pi)\left[\frac{(x+1)^{5}}{5}\right]+\left[\frac{(x+1)^{-1}}{-1}\right]+\left[\frac{2(x+1)^{2}}{2}\right] \\ & \text { OR }(\pi)\left[\frac{x^{5}}{5}+x^{4}+2 x^{3}+2 x^{2}+x\right]+\left[x^{2}+2 x\right]+\left[-\frac{1}{x+1}\right] \end{aligned}$	B1B1B1	Attempt to integrate y^{2}. Last term might appear as $\left(x^{2}+2 x\right)$
	$(\pi)\left[\frac{32}{5}-\frac{1}{2}+4-\left(\frac{1}{5}-1+1\right)\right]$	M1	Substitute limits $0 \rightarrow 1$ into an attempted integration of y^{2}. Do not condone omission of value when $x=0$
	9.7π or 30.5	A1	Note: omission of $2(x+1)$ in first line $\rightarrow 6.7 \pi$ scores $3 / 6$ Ignore initially an extra volume, e.g. $(\pi) \int\left(4^{1 / 2}\right)^{2}$. Only take into account for the final answer
		6	

