May/June 2018

9709 s18 ms 13

Question	Answer	Marks	Guidance
1	$[3]\left[\left(x-2\right)^2\right]\left[-5\right]$	B1B1B1	OR $a = 3$, $b = -2$, $c = -5$. 1st mark is dependent on the form $(x + a)^2$ following 3
		3	

Question	Answer	Marks	Guidance
2	${}_{5}C_{3} x^{2} \left(\frac{-2}{x}\right)^{3} SOI$	B2,1,0	-80 www scores B3. Accept ${}_5C_2$.
	$-80 \operatorname{Accept} \frac{-80}{x}$	B1	+80 without clear working scores SCB1
		3	

Question	Answer	Marks	Guidance
3	$3 \qquad \left[\frac{a(1-r^n)}{1-r}\right] [\div] \left[\frac{a}{1-r}\right]$		Correct formulae <u>used</u> with/without $r = 0.99$ or $n = 100$.
		DM1	Allow numerical <i>a</i> (M1M1). 3rd M1 is for division $\frac{S_n}{S_{\infty}}$ (or ratio) SOI
	$1 - 0.99^{100}$ SOI OR $\frac{63(a)}{100(a)}$ SOI	A1	Could be shown multiplied by 100(%). Dep. on DM1
	63(%) Allow 63.4 or 0.63 but not 2 infringements (e.g. 0.634, 0.63%)	A1	$n = 99$ used scores Max M3. Condone $a = 0.99$ throughout $S_n = S_{\infty}$ (without division shown) scores 2 / 5
		5	

9709/13

May/June 2018

Question	Answer	Marks	Guidance
4	$f(x) = \left[\frac{(3x-1)^{\frac{2}{3}}}{\frac{2}{3}}\right] [\div 3] (+c)$	B1B1	
	$1 = \frac{8^{\frac{2}{3}}}{2} + c$	M1	Sub $y = 1, x = 3$ Dep. on attempt to integrate and <i>c</i> present
	$c = -1 \rightarrow y = \frac{1}{2} (3x - 1)^{\frac{2}{3}} - 1$ SOI	A1	
	When $x = 0$, $y = \frac{1}{2}(-1)^{\frac{2}{3}} - 1 = -\frac{1}{2}$	DM1A1	Dep. on previous M1
		6	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer		Marks	Guidance
5	Angle $AOC = \frac{6}{5}$ or 1.2		M1	Allow 68.8°. Allow $\frac{5}{6}$
	$AB = 5 \times tan(their 1.2)$ OR by e.g. Sine Rule	Expect 12.86	DM1	OR $OB = \frac{5}{\cos their 1.2}$. Expect 13.80
	Area $\triangle OAB = \frac{1}{2} \times 5 \times their 12.86$	Expect 32.15	DM1	OR $\frac{1}{2} \times 5 \times their OB \times sin their 1.2$
	Area sector $\frac{1}{2} \times 5^2 \times their 1.2$	Expect 15	DM1	All DM marks are dependent on the first M1
	Shaded region = $32.15 - 15 = 17.2$		A1	Allow degrees used appropriately throughout. 17.25 scores A0
			5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

9709 s18 ms 13

Question	Answer	Marks	Guidance
6(i)	Gradient, m, of $AB = \frac{3k+5-(k+3)}{k+3-(-3k-1)}$ OE $\left(=\frac{2k+2}{4k+4}\right) = \frac{1}{2}$	M1A1	Condone omission of brackets for M mark
		2	
6(ii)	Mid-pt = $\left[\frac{1}{2}(-3k-1+k+3), \frac{1}{2}(3k+5+k+3)\right] =$	B1B1	B1 for $\frac{-2k+2}{2}$, B1 for $\frac{4k+8}{2}$ (ISW) or better, i.e. $(-k+1, 2k+4)$
	$\left(\frac{-2k+2}{2},\frac{4k+8}{2}\right)$ SOI		
	Gradient of perpendicular bisector is $\frac{-1}{their m}$ SOI Expect -2	M1	Could appear in subsequent equation and/or could be in terms of k
	Equation: $y - (2k + 4) = -2[x - (-k + 1)]$ OE	DM1	Through <i>their</i> mid-point and with <i>their</i> $\frac{-1}{m}$ (now numerical)
	y + 2x = 6	A1	Use of numerical k in (ii) throughout scores SC2/5 for correct answer
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
7(a)(i)	$\frac{\tan^2 \theta - 1}{\tan^2 \theta + 1} = \frac{\frac{\sin \theta^2}{\cos \theta^2} - 1}{\frac{\sin \theta^2}{\cos \theta^2} + 1}$	M1	
	$= \frac{\sin\theta^2 - \cos\theta^2}{\sin\theta^2 + \cos\theta^2}$	A1	multiplying by $\cos \theta^2$ Intermediate stage can be omitted by multiplying directly by $\cos \theta^2$
	$= \sin \theta^2 - \cos \theta^2 = \sin \theta^2 - (1 - \sin \theta^2) = 2\sin^2 \theta - 1$	A1	Using $\sin \theta^2 + \cos \theta^2 = 1$ twice. Accept $a = 2, b = -1$
	ALT 1 $\frac{\sec^2 \theta - 2}{\sec^2 \theta}$	M1	ALT 2 $\frac{\tan^2 \theta - 1}{\sec^2 \theta}$
	$1 - \frac{2}{\sec^2 \theta} = 1 - 2\cos^2 \theta$	A1	$(\tan^2\theta - 1)\cos^2\theta$
	$1 - 2\left(1 - \sin^2\theta\right) = 2\sin^2\theta - 1$	A1	$\sin^2\theta - \cos^2\theta = \sin^2\theta - (1 - \sin^2\theta) = 2\sin^2\theta - 1$
		3	
7(a)(ii)	$2\sin^2\theta - 1 = \frac{1}{4} \longrightarrow \sin\theta = (\pm)\sqrt{\frac{5}{8}} \text{ or } (\pm)0.7906$	M1	OR $\frac{t^2 - 1}{t^2 + 1} = \frac{1}{4} \rightarrow 3t^2 = 5 \rightarrow t = (\pm)\sqrt{\frac{5}{3}}$ or $t = (\pm)1.2910$
	$\theta = -52.2$	A1	
		2	

Question	Answer	Marks	Guidance
7(b)(i)	$\sin x = 2\cos x \rightarrow \tan x = 2$	M1	Or $\sin x = \sqrt{\frac{4}{5}}$ or $\cos x = \sqrt{\frac{1}{5}}$
	x = 1.11 with no additional solutions	A1	Accept 0.352π or 0.353π . Accept in co-ord form ignoring y co-ord
		2	
7(b)(ii)	Negative answer in range $-1 < y < -0.8$	B1	
	-0.894 or -0.895 or -0.896	B1	
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
8(i)	$\frac{dy}{dx} = 3x^2 - 18x + 24$		Attempt to differentiate. All correct for A mark
	$3x^2 - 18x + 24 = -3$	M1	Equate <i>their</i> $\frac{dy}{dx}$ to -3
	<i>x</i> = 3	A1	
	y = 6	A1	
	y-6=-3(x-3)	A1FT	FT on <i>their A</i> . Expect $y = -3x + 15$
		6	
8(ii)	(3)(x-2)(x-4) SOI or $x = 2, 4$ Allow $(3)(x+2)(x+4)$	M1	Attempt to factorise or solve. Ignore a RHS, e.g. = 0 or > 0 , etc.
	Smallest value of k is 4	A1	Allow $k \ge 4$. Allow $k = 4$. Must be in terms of k
		2	

Question	Answer	Marks	Guidance
9(i)	$OE = \frac{2}{10}(8i + 6j) = 1.6i + 1.2j$ AG	M1A1	Evidence of $OB = 10$ or other valid method (e.g. trigonometry) is required
		2	
9(ii)	OD = 1.6i + 1.2j + 7k	B1	Allow reversal of one or both of OD , BD .
	BD = -8i - 6j + 1.6i + 1.2j + 7k OE = $-6.4i - 4.8j + 7k$	M1A1	For M mark allow sign errors. Also if 2 out of 3 components correct
	Correct method for \pm OD . \pm BD (using <i>their</i> answers)	M1	Expect $1.6 \times -6.4 + 1.2 \times -4.8 + 49 = 33$ or $\frac{825}{25} 825 / 25$.
	Correct method for OD or BD (using <i>their</i> answers)	M1	Expect $\sqrt{1.6^2 + 1.2^2 + 7^2}$ or $\sqrt{6.4^2 + 4.8^2 + 7^2} = \sqrt{53}$ or $\sqrt{113}$
	$Cos BDO = their \frac{OD.BD}{ OD \times BD }$	DM1	Expect $\frac{33}{77.4}$. Dep. on all previous M marks and either B1 or A1
	64.8° Allow 1.13(rad)	A1	Can't score A1 if 1 vector only is reversed unless explained well
		7	

May/June 2018

970	9	s1	8	ms	13

Question	Answer	Marks	Guidance
10(i)	Smallest value of <i>c</i> is 2. Accept 2, $c = 2$, $c \ge 2$. Not in terms of <i>x</i>	B1	Ignore superfluous working, e.g. $\frac{d^2 y}{dx^2} = 2$
		1	
10(ii)	$y = (x-2)^2 + 2 \rightarrow x - 2 = (\pm)\sqrt{y-2} \rightarrow x = (\pm)\sqrt{y-2} + 2$	M1	Order of operations correct. Allow sign errors
	$f^{-1}(x) = \sqrt{x-2} + 2$	A1	Accept $y = \sqrt{x-2} + 2$
	Domain of f^{-1} is $x \ge 6$. Allow ≥ 6 .	B1	Not $f^{-1}(x) \ge 6$. Not $f(x) \ge 6$. Not $y \ge 6$
		3	
10(iii)	$\left[(x-2)^2 + 2 - 2 \right]^2 + 2 = 51 \text{ SOI Allow 1 term missing for M mark}$ Or $(x^2 - 4x + 6)^2 - 4(x^2 - 4x + 6) + 6 = 51$	M1A1	ALT. $f(x) = f^{-1}(51)(M1) = \sqrt{51-2} + 2$ (A1)
	$(x-2)^4 = 49$ or $(x^2 - 4x + 4)^2 = 49$ OR $x^4 - 8x^3 + 24x^2 - 32x - 33 = 0$ often implied by next line	A1	$(x-2)^2 + 2 = \sqrt{49} + 2$ OR $f(x) = 9$
	$(x-2)^2 = (\pm)7$ OR $x^2 - 4x - 3 = 0$. Ignore $x^2 - 4x + 11 = 0$	A1	$(x-2)^2 = 7 \text{ OR } x = f^{-1}(9)$
	$x = 2 + \sqrt{7}$ only CAO $x = 2 + \sqrt[4]{49}$ scores 3/5	A1	$x = 2 + \sqrt{7}$
		5	

May/June 2018

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\left(x+1\right) - \left(x+1\right)^{-2}$	B1	
	Set = 0 and obtain $2(x+1)^3 = 1$ <u>convincingly</u> www AG	B1	
	$\frac{d^2 y}{dx^2} = 2 + 2(x+1)^{-3} \text{ www}$	B1	
	Sub, e.g., $(x+1)^{-3} = 2$ OE or $x = \left(\frac{1}{2}\right)^{\frac{1}{3}} - 1$	M1	Requires <u>exact</u> method – otherwise scores M0
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6 \qquad \qquad \text{CAO www}$	A1	and <u>exact</u> answer – otherwise scores A0
		5	

May/June 2018

9709 s18 ms 13

Question	Answer	Marks	Guidance
11(ii)	$y^{2} = (x+1)^{4} + (x+1)^{-2} + 2(x+1)$ SOI	B1	OR $y^2 = (x^4 + 4x^3 + 6x^2 + 4x + 1) + (2x + 2) + (x + 1)^{-2}$
	$(\pi)\int y^2 dx = (\pi)\left[\frac{(x+1)^5}{5}\right] + \left[\frac{(x+1)^{-1}}{-1}\right] + \left[\frac{2(x+1)^2}{2}\right]$	B1B1B1	Attempt to integrate y^2 . Last term might appear as $(x^2 + 2x)$
	OR $(\pi)\left[\frac{x^5}{5} + x^4 + 2x^3 + 2x^2 + x\right] + \left[x^2 + 2x\right] + \left[-\frac{1}{x+1}\right]$		
	$(\pi) \left[\frac{32}{5} - \frac{1}{2} + 4 - \left(\frac{1}{5} - 1 + 1\right) \right]$	M1	Substitute limits $0 \rightarrow 1$ into an attempted integration of y^2 . Do not condone omission of value when $x = 0$
	9.7π or 30.5	A1	Note: omission of $2(x+1)$ in first line $\rightarrow 6.7\pi$ scores 3/6
			Ignore initially an extra volume, e.g. $(\pi) \int (4^{1/2})^2$. Only take into account for the final answer
		6	