Question	Answer	Marks	Guidance
1	Coefficient of x^{2} in $\left(2+\frac{x}{2}\right)^{6}$ is ${ }_{6} \mathrm{C}_{2} \times 2^{4} \times(1 / 2)^{2}\left(x^{2}\right)(=60)$	B2,1,0	3 things wanted -1 each incorrect component, must be multiplied together. Allow ${ }_{6} \mathrm{C}_{4},\binom{6}{4}$ and factorial equivalents. Marks can be awarded for correct term in an expansion.
	Coefficient of x^{2} in $(a+x)^{5}$ is ${ }_{5} \mathrm{C}_{2} \times a^{3}\left(x^{2}\right)\left(=10 a^{3}\right)$	B1	Marks can be awarded for correct term in an expansion.
	$\rightarrow 60+10 a^{3}=330$	M1	Forms an equation 'their 60 ' + 'their $10 a^{3}$ ' $=330$, OK with x^{2} in all three terms initially. This can be recovered by a correct answer.
	$a=3$	A1	Condone ± 3 as long as +3 is selected.
		5	

Question	Answer	Marks	Guidance
2(i)			A complete method as far as finding a set of values for k by:
	Either $(x-3)^{2}+k-9>0, k-9>0$		Either completing the square and using 'their $k-9$ ' $>$ or $\geqslant 0$ OR
	or $2 x-6=0 \rightarrow(3, k-9), k-9>0$	M1	Differentiating and setting to 0 , using 'their $x=3$ ' to find y and using 'their $k-9$ ' $>$ or $\geqslant 0$ OR
	or $b^{2}<4 a c$ oe $\rightarrow 36<4 k$		Use of discriminant $<$ or $\leqslant 0$. Beware use of $>$ and incorrect algebra.
	$\rightarrow k>9$ Note: not \geqslant	A1	T\&I leading to (or no working) correct answer 2/2 otherwise 0/2.
		2	

Question	Answer	Marks	Guidance
2(ii)	EITHER		
	$x^{2}-6 x+k=7-2 x \rightarrow x^{2}-4 x+k-7(=0)$	*M1	Equates and collects terms.
	Use of $b^{2}-4 a c=0(16-4(k-7)=0)$	DM1	Correct use of discriminant $=0$, involving k from a 3 term quadratic.
	OR		
	$2 x-6=-2 \rightarrow x=2(y=3)$	*M1	Equates their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to ± 2, finds a value for x.
	$($ their 3$)$ or $7-2($ their 2$)=(\text { their } 2)^{2}-6($ their 2$)+k$	DM1	Substitutes their value(s) into the appropriate equation.
	$\rightarrow k=11$	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	$r=1.02$ or $\frac{102}{100}$ used in a GP in some way.	B1	Can be awarded here for use in S_{n} formula.
	Amount in 12th week $=8000(\text { their } r)^{11}$ or $\left(\right.$ their a from $\left.\frac{8000}{\text { their } r .}\right)(\text { their } r)^{12}$	M1	Use of $a r^{n-1}$ with $\mathrm{a}=8000 \& n=12$ or with $\mathrm{a}=\frac{8000}{1.02}$ and $n=13$.
	$=9950(\mathrm{~kg}) \mathrm{awrt}$	A1	Note: Final answer of either 9943 or 9940 implies M1. Full marks can be awarded for a correct answer from a list of terms.
		3	

Question	Answer	Marks	Guidance
3 (ii)	In 12 weeks, total is $\frac{8000\left((\text { theirr })^{12}-1\right)}{((\text { their })-1)}$	M1	Use of S_{n} with a $=8000$ and $n=12$ or addition of 12 terms.
	$=107000(\mathrm{~kg})$ awrt	$\mathbf{A 1}$	Correct answer but no working $2 / 2$
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
4(i)	$a+1 / 2 b=5$	B1	Alternatively these marks can be awarded when $1 / 2$ and -1 appear after a or b has been eliminated.
	$a-b=11$	B1	
	$\rightarrow a=7$ and $b=-4$	B1	
		[3]	
4(ii)	$a+b$ or their $a+$ their b (3)	B1	Not enough to be seen in a table of values - must be selected. Graph from their values can get both marks. Note: Use of $b^{2}-4 a c$ scores $0 / 3$
	$a-b$ or their $a-$ their b (11).	B1	
	$\rightarrow k<3, k>11$	B1	Both inequalities correct. Allow combined statement as long as correct inequalities if taken separately. Both answers correct from T \& I or guesswork $3 / 3$ otherwise $0 / 3$
		3	

Question	Answer	Marks	Guidance
5(i)	$\overrightarrow{D A}=6 \mathbf{i}-4 \mathbf{k}$	B1	
	$\overrightarrow{C A}=6 \mathbf{i}-5 \mathbf{j}-4 \mathbf{k}$	B1	
		2	
5(ii)	Method marks awarded only for their vectors $\pm \overrightarrow{C A} \& \pm \overrightarrow{D A}$		Full marks can be obtained using $\overrightarrow{A C} \& \overrightarrow{A D}$
	$\overrightarrow{C A} \cdot \overrightarrow{D A}=36+16(=52)$	M1	Using $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
	$\|\overrightarrow{D A}\|=\sqrt{52},\|\overrightarrow{C A}\|=\sqrt{77}$	M1	Uses modulus twice
	$52=\sqrt{ } 77 \sqrt{ } 52 \cos C \hat{A} D$ oe	M1	All linked correctly
	$\operatorname{Cos} C \hat{A} D=0.82178 . . \rightarrow C \hat{A} D=34.7^{\circ}$ or $0.606^{\text {c }}$ awrt	A1	Answer must come from + ve cosine ratio
		4	

Question	Answer	Marks	Guidance
6 (i)	$A T$ or $B T=r \tan \theta$ or $O T=\frac{r}{\cos \vartheta}$	B1	May be seen on diagram.
	$1 / 2 r^{2} 2 \theta, \& \frac{1}{2} \times r \times(r \tan \theta$ or $A T)$ or $1 / 2 \times r \times\left(\frac{r}{\cos \vartheta}\right.$ or $\left.O T\right) \sin \theta$	M1	Both formulae, $\left(1 / 2 r^{2} \theta, 1 / 2 b h\right.$ or $\left.1 / 2 a b \sin \theta\right)$, seen with 2θ used when needed.
	$1 / 2 r^{2} 2 \theta=2 \times 1 / 2 \times r \times r \tan \theta-1 / 2 r^{2} 2 \theta$ oe $\rightarrow 2 \theta=\tan \theta \mathbf{A G}$	A1	Fully correct working from a correct statement. Note: $1 / 2 r^{2} 2 \theta=1 / 2 r^{2} \tan \theta$ is a valid statement.
		3	

Question	Answer	Marks	Guidance
6(ii)	$\theta=1.2$ or sector area $=76.8$	B1	B1
	Area of kite $=165$ awrt	B1	awrt 87.8 with little or no working can be awarded 3/3. SC Final answers that round to 88 with little or no working can be awarded $2 / 3$.
	$164.6-76.8=87.8$ awrt	$\mathbf{3}$	

Question	Answer	Marks	Guidance
7(i)	$25-2(x+3)^{2}$	B1 B1	Mark expression if present: B1 for 25 and B1 for $-2(x+3)^{2}$. If no expression award $a=25 \mathrm{~B} 1$ and $b=3 \mathrm{~B} 1$.
		2	
7(ii)	$(-3,25)$	B1FT	FT from answers to (i) or by calculus
		1	
7(iii)	$(k)=-3$ also allow x or $k \geqslant-3$	B1FT	FT from answer to (i) or (ii) NOT $x=-3$
		1	

Question	Answer	Marks	Guidance
7(iv)	EITHER		
	$y=25-2(x+3)^{2} \rightarrow 2(x+3)^{2}=25-y$	*M1	Makes their squared term containing x the subject or equivalent with x / y interchanged first. Condone errors with $+/$ signs.
	$x+3=(\pm) \sqrt{1 / 2(25-y)}$	DM1	Divide by ± 2 and then square root allow \pm.
	OR		
	$y=7-2 x^{2}-12 x \rightarrow 2 x^{2}+12 x+y-7(=0)$	*M1	Rearranging equation of the curve.
	$x=\frac{-12 \pm \sqrt{12^{2}-8(y-7)}}{4}$	DM1	Correct use of their ' a, b and c ' in quadratic formula. Allow just + in place of \pm.
	$\mathrm{g}^{-1}(x)=\sqrt{\left(\frac{25-\boldsymbol{x}}{2}\right)}-3 \mathrm{oe}$ isw if substituting $x=-3$	A1	\pm gets A0. Must now be a function of x. Allow $y=$
		3	

Question	Answer	Marks	Guidance
8	EITHER		
	$\text { Gradient of bisector }=-\frac{3}{2}$	B1	
	gradient $A B=\frac{5 h-h}{4 h+6-h}$	*M1	Attempt at $\frac{y-\text { step }}{x-\text { step }}$
	Either $\frac{5 h-h}{4 h+6-h}=\frac{2}{3}$ or $-\frac{4 h+6-h}{5 h-h}=-\frac{3}{2}$	*M1	Using $m_{1} m_{2}=-1$ appropriately to form an equation.
	OR		
	$\text { Gradient of bisector }=-\frac{3}{2}$	B1	
	Using gradient of $A B$ and A, B or midpoint $\rightarrow \frac{2}{3} x+\frac{h}{3}=y$ oe	*M1	Obtain equation of $A B$ using gradient from $m_{1} m_{2}=-1$ and a point.
	Substitute co-ordinates of one of the other points	*M1	Arrive at an equation in h.
	$\mathrm{h}=2$	A1	
	Midpoint is $\left(\frac{5 h+6}{2}, 3 h\right)$ or $(8,6)$	B1FT	Algebraic expression or FT for numerical answer from 'their h '
	Uses midpoint and 'their h ' with $3 x+2 y=k$	DM1	Substitutes 'their midpoint' into $3 x+2 y=k$. If $y=-\frac{3}{2} x+c$ is used (expect $c=18$) the method mark should be withheld until they $\times 2$.
	$\rightarrow k=36$ soi	A1	
		7	

Question	Answer	Marks	Guidance
9(i)	$y=\frac{2}{3}(4 x+1)^{\frac{3}{2}} \div 4(+\mathrm{C})\left(=\frac{(4 x+1)^{\frac{3}{2}}}{6}\right)$	B1 B1	B1 without $\div 4$. B1 for $\div 4$ oe. Unsimplified OK
	Uses $x=2, y=5$	M1	Uses (2,5) in an integral (indicated by an increase in power by 1).
	$\rightarrow \boldsymbol{c}=1 / 2$ oe isw	A1	No isw if candidate now goes on to produce a straight line equation
		4	
9(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$		
	$\frac{d x}{d t}=0.06 \div 3$	M1	Ignore notation. Must be $0.06 \div 3$ for M1.
	$=0.02 \mathrm{oe}$	A1	Correct answer with no working scores $2 / 2$
		2	
9(iii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1 / 2(4 x+1)^{-1 / 2} \times 4$	B1	
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \times \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{4 x+1}} \times \sqrt{4 x+1} \quad(=2)$	B1FT	Must either show the algebraic product and state that it results in a constant or evaluate it as ' $=2$ '. Must not evaluate at $x=2$. ft to apply only if $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is of the form $k(4 x+1)^{-1 / 2}$
		2	

Question	Answer	Marks	Guidance
$10(\mathrm{i})$	$2 \cos x=-3 \sin x \rightarrow \tan x=-2 / 3$	M1	Use of $\tan =\sin / \cos$ to get tan $=$, or other valid method to find sin or $\cos =$. M0 for $\tan x=+/-\frac{3}{2}$
	$\rightarrow x=146.3^{\circ}$ or 326.3° awrt	A1 A1FT	FT for 180 added to an incorrect first answer in the given range. The second A1 is withheld if any further values in the range $0^{\circ} \leqslant x \leqslant 360^{\circ}$ are given. Answers in radians score A0, A0.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
10(ii)	No labels required on either axis. Assume that the diagram is 0° to 360° unless labelled otherwise. Ignore any part of the diagram outside this range.		
		B1	Sketch of $y=2 \cos x$. One complete cycle; start and finish at top of curve at roughly the same positive y value and go below the x axis by roughly the same distance. (Can be a poor curve but not straight lines.)
		B1	Sketch of $y=-3 \sin x$ One complete cycle; start and finish on the x axis, must be inverted and go below and then above the x axis by roughly the same distance. (Can be a poor curve but not straight lines.)
		B1	Fully correct answer including the sine curve with clearly larger amplitude than cosine curve. Must now be reasonable curves.
			Note: Separate diagrams can score $2 / 3$
		3	
10(iii)	$x<146.3^{\circ}, x>326.3^{\circ}$	B1FT B1FT	Does not need to include $0^{\circ}, 360^{\circ}$. V from their answers in (i) Allow combined statement as long as correct inequalities if taken separately. SC For two correct values including ft but with \leqslant and \geqslant B1
		2	

Question	Answer	Marks	Guidance
11 (i)	$y=\frac{x}{2}+\frac{6}{x}=4 \rightarrow x=2$ or 6	B1 B1	Inspection or guesswork OK
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}-\frac{6}{x^{2}}$	B1	Unsimplified OK
	When $x=2, m=-1 \rightarrow x+y=6$ When $x=6, m=\frac{1}{3} \rightarrow y=\frac{1}{3} x+2$	"M1	Correct method for either tangent
	Attempt to solve simultaneous equations	DM1	Could solve BOTH equations separately with $y=x$ and get $x=3$ both times.
		$\mathbf{A 1}$	Statement about $y=x$ not required.

Question	Answer	Marks	Guidance
11(ii)	$\mathrm{V}=(\pi) \int\left(\frac{x^{2}}{4}+6+\frac{36}{x^{2}}\right)(\mathrm{d} x)$	*M1	Integrate using $\pi \int y^{2} \mathrm{~d} x$ (doesn't need π or $d x$). Allow incorrect squaring. Not awarded for $\pi\left\{\left\{4-\left(\frac{x}{2}+\frac{6}{x}\right)\right\}^{2} \mathrm{~d} x\right.$. Integration indicated by increase in any power by 1 .
	Integration $\rightarrow \frac{\mathrm{x}^{3}}{12}+6 x-\frac{36}{x}$	A2,1	3 things wanted -1 each error, allow + C. (Doesn't need π)
	Using limits 'their 2 ' to 'their 6 ' ($53 \frac{1}{3} \pi, \frac{160}{3} \pi, 168 \mathrm{awrt}$)	DM1	Evidence of their values 6 and 2 from (i) substituted into their integrand and then subtracted. $48-\left(-\frac{16}{3}\right)$ is enough.
	Vol for line: integration or cylinder $(\rightarrow 64 \pi)$	M1	Use of $\pi r^{2} h$ or integration of 4^{2} (could be from $\left\{4-\left(\frac{x}{2}+\frac{6}{x}\right)\right\}^{2}$)
	Subtracts $\rightarrow 10 \frac{2}{3} \pi$ oe (e.g. $\left.\frac{32}{3} \pi, 33.5 \mathrm{awrt}\right)$	A1	

Question	Answer	Marks	Guidance
11(ii)	OR		
	$\mathrm{V}=(\pi) \int 4^{2}-\left(\frac{x}{2}+\frac{6}{x}\right)^{2}(\mathrm{~d} x)$	M1 *M1	Integrate using $\pi \int y^{2} \mathrm{~d} x$ (doesn't need π or $d x$) Integration indicated by increase in any power by 1 .
	$=(\pi) \int 16-\left(\frac{x^{2}}{4}+6+\frac{36}{x^{2}}\right)(\mathrm{d} x)$		
	$=(\pi)\left[16 x-\left(\frac{x^{3}}{12}+6 x-\frac{36}{x}\right)\right](\mathrm{d} x)$	A2,1	Or $\left[10 x-\frac{x^{3}}{12}+\frac{36}{x}\right]$
	$=(\pi)(48-371 / 3)$	DM1	Evidence of their values 6 and 2 from (i) substituted
	$=10 \frac{2}{3} \pi$ oe $\left(\mathrm{eg} \frac{32}{3} \pi, 33.5 \mathrm{awrt}\right)$	A1	
		6	

