Question	Answer	Marks	Guidance
1	Coefficient of x^2 in $\left(2 + \frac{x}{2}\right)^6$ is ${}_6C_2 \times 2^4 \times (\frac{1}{2})^2 (x^2) (= 60)$	B2,1,0	3 things wanted –1 each incorrect component, must be multiplied together. Allow ${}_{6}C_{4}$, $\begin{pmatrix} 6\\4 \end{pmatrix}$ and factorial equivalents. Marks can be awarded for correct term in an expansion.
	Coefficient of x^2 in $(a + x)^5$ is ${}_{5}C_2 \times a^3 (x^2) (= 10a^3)$	B1	Marks can be awarded for correct term in an expansion.
	$\longrightarrow 60 + 10a^3 = 330$	M1	Forms an equation ' <i>their 60</i> ' + ' <i>their 10a</i> ³ ' = 330, OK with x^2 in all three terms initially. This can be recovered by a correct answer.
	a = 3	A1	Condone ± 3 as long as $+3$ is selected.
		5	

Question	Answer	Marks	Guidance
2(i)			A complete method as far as finding a set of values for <i>k</i> by:
	Either $(x-3)^2 + k - 9 > 0, k - 9 > 0$		Either completing the square and using ' <i>their</i> $k - 9$ ' > or ≥ 0 OR
	or $2x - 6 = 0 \rightarrow (3, k - 9), k - 9 > 0$	M1	Differentiating and setting to 0, using ' <i>their</i> $x=3$ ' to find y and using ' <i>their</i> $k - 9$ ' > or ≥ 0 OR
	or $b^2 < 4ac$ oe $\rightarrow 36 < 4k$		Use of discriminant $<$ or ≤ 0 . Beware use of $>$ and incorrect algebra.
	$\rightarrow k > 9$ Note: not \ge	A1	T&I leading to (or no working) correct answer 2/2 otherwise 0/2.
		2	

Question	Answer	Marks	Guidance
2(ii)	EITHER		
	$x^{2} - 6x + k = 7 - 2x \longrightarrow x^{2} - 4x + k - 7 \ (= 0)$	[*] M1	Equates and collects terms.
	Use of $b^2 - 4ac = 0$ (16 - 4(k - 7) = 0)	DM1	Correct use of discriminant = 0, involving k from a 3 term quadratic.
	OR		
	$2x - 6 = -2 \rightarrow x = 2 \ (y = 3)$	*M1	Equates their $\frac{dy}{dx}$ to ± 2 , finds a value for <i>x</i> .
	(<i>their</i> 3) or $7-2(their 2) = (their 2)^2 - 6(their 2) + k$	DM1	Substitutes their value(s) into the appropriate equation.
	$\rightarrow k = 11$	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	$r = 1.02$ or $\frac{102}{100}$ used in a GP in some way.	B1	Can be awarded here for use in S _n formula.
	Amount in 12th week = 8000 (<i>their r</i>) ¹¹ or (<i>their a from</i> $\frac{8000}{their r}$) (<i>their r</i>) ¹²	M1	Use of ar^{n-1} with a = 8000 & $n = 12$ or with a = $\frac{8000}{1.02}$ and $n = 13$.
	= 9950 (kg) awrt	A1	Note: Final answer of either 9943 or 9940 implies M1. Full marks can be awarded for a correct answer from a list of terms.
		3	

Question	Answer	Marks	Guidance
3(ii)	In 12 weeks, total is $\frac{8000((their r)^{12} - 1)}{((their r) - 1)}$	M1	Use of S_n with a = 8000 and $n = 12$ or addition of 12 terms.
	= 107000 (kg) awrt	A1	Correct answer but no working 2/2
		2	

Question	Answer	Marks	Guidance
4(i)	$a + \frac{1}{2}b = 5$	B1	Alternatively these marks can be awarded when $\frac{1}{2}$ and -1 appear
	a - b = 11	B1	after <i>a</i> or <i>b</i> has been eliminated.
	$\rightarrow a = 7 \text{ and } b = -4$	B1	
		[3]	
4(ii)	a + b or their $a + their b$ (3)	B1	Not enough to be seen in a table of values – must be selected.
	a - b or their $a - their b$ (11).	B1	Note: Use of $b^2 - 4ac$ scores $0/3$
	$\rightarrow k < 3$, $k > 11$	B1	Both inequalities correct. Allow combined statement as long as correct inequalities if taken separately. Both answers correct from T & I or guesswork 3/3 otherwise 0/3
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
5(i)	$\overrightarrow{DA} = 6\mathbf{i} - 4\mathbf{k}$	B1	
	$\overline{CA} = 6\mathbf{i} - 5\mathbf{j} - 4\mathbf{k}$	B1	
		2	
5(ii)	Method marks awarded only for <i>their</i> vectors $\pm \overrightarrow{CA} \& \pm \overrightarrow{DA}$		Full marks can be obtained using \overrightarrow{AC} & \overrightarrow{AD}
	$\overrightarrow{CA} \cdot \overrightarrow{DA} = 36 + 16 \ (= 52)$	M1	Using $x_1x_{2+}y_1y_2+z_1z_2$
	$\left \overrightarrow{DA} \right = \sqrt{52}$, $\left \overrightarrow{CA} \right = \sqrt{77}$	M1	Uses modulus twice
	$52 = \sqrt{77}\sqrt{52\cos \hat{CAD}}$ oe	M1	All linked correctly
	$\cos \hat{CAD} = 0.82178 \rightarrow \hat{CAD} = 34.7^{\circ} \text{ or } 0.606^{\circ} \text{ awrt}$	A1	Answer must come from +ve cosine ratio
		4	

Question	Answer	Marks	Guidance
6(i)	$AT \text{ or } BT = r \tan \theta \text{ or } OT = \frac{r}{\cos \theta}$	B1	May be seen on diagram.
	$\frac{1}{2}r^2 2\theta$, & $\frac{1}{2} \times r \times (r \tan \theta \text{ or } AT)$ or $\frac{1}{2} \times r \times (\frac{r}{\cos \theta} \text{ or } OT) \sin \theta$	M1	Both formulae, $(\frac{1}{2}r^2\theta, \frac{1}{2}bh \text{ or } \frac{1}{2}absin\theta)$, seen with 2θ used when needed.
	$\frac{1}{2}r^22\theta = 2 \times \frac{1}{2} \times r \times r \tan \theta - \frac{1}{2}r^22\theta$ or $\rightarrow 2\theta = \tan \theta \mathbf{AG}$	A1	Fully correct working from a correct statement. Note: $\frac{1}{2}r^22\theta = \frac{1}{2}r^2\tan\theta$ is a valid statement.
		3	

Question	Answer	Marks	Guidance
6(ii)	$\theta = 1.2$ or sector area = 76.8	B 1	
	Area of kite = 165 awrt	B 1	
	164.6 - 76.8 = 87.8 awrt	B1	awrt 87.8 with little or no working can be awarded $3/3$. SC Final answers that round to 88 with little or no working can be awarded $2/3$.
		3	

Question	Answer	Marks	Guidance
7(i)	$25 - 2(x + 3)^2$	B1 B1	Mark expression if present: B1 for 25 and B1 for $-2(x + 3)^2$. If no expression award $a = 25$ B1 and $b = 3$ B1.
		2	
7(ii)	(-3, 25)	B1FT	FT from answers to (i) or by calculus
		1	
7(iii)	$(k) = -3$ also allow <i>x</i> or $k \ge -3$	B1FT	FT from answer to (i) or (ii) NOT $x = -3$
		1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

9709_s18_ms_12

Question	Answer	Marks	Guidance
7(iv)	EITHER		
	$y = 25 - 2(x + 3)^2 \rightarrow 2(x + 3)^2 = 25 - y$	*M1	Makes their squared term containing x the subject or equivalent with x/y interchanged first. Condone errors with +/- signs.
	$x + 3 = (\pm)\sqrt{\frac{1}{2}(25 - y)}$	DM1	Divide by ± 2 and then square root allow \pm .
	OR		
	$y = 7 - 2x^2 - 12x \rightarrow 2x^2 + 12x + y - 7 (= 0)$	[*] M1	Rearranging equation of the curve.
	$x = \frac{-12 \pm \sqrt{12^2 - 8(y - 7)}}{4}$	DM1	Correct use of their ' <i>a</i> , <i>b</i> and c' in quadratic formula. Allow just + in place of \pm .
	$g^{-1}(x) = \sqrt{\left(\frac{25-x}{2}\right)} - 3$ oe	A1	\pm gets A0. Must now be a function of <i>x</i> . Allow <i>y</i> =
	isw if substituting $x = -3$		
		3	

May/June 2018

9709 s18 ms 12

Question	Answer	Marks	Guidance
8	EITHER		
	Gradient of bisector $= -\frac{3}{2}$	B1	
	gradient $AB = \frac{5h-h}{4h+6-h}$	*M1	Attempt at $\frac{y - step}{x - step}$
	Either $\frac{5h-h}{4h+6-h} = \frac{2}{3}$ or $-\frac{4h+6-h}{5h-h} = -\frac{3}{2}$	[*] M1	Using $m_1m_2 = -1$ appropriately to form an equation.
	OR		
	Gradient of bisector = $-\frac{3}{2}$	B1	
	Using gradient of <i>AB</i> and <i>A</i> , <i>B</i> or midpoint $\rightarrow \frac{2}{3}x + \frac{h}{3} = y$ oe	[*] M1	Obtain equation of <i>AB</i> using gradient from $m_1m_2 = -1$ and a point.
	Substitute co-ordinates of one of the other points	[*] M1	Arrive at an equation in <i>h</i> .
	h = 2	A1	
	Midpoint is $\left(\frac{5h+6}{2}, 3h\right)$ or $(8, 6)$	B1FT	Algebraic expression or FT for numerical answer from ' <i>their h</i> '
	Uses midpoint and ' <i>their h</i> ' with $3x + 2y = k$	DM1	Substitutes ' <i>their midpoint</i> ' into $3x + 2y = k$. If $y = -\frac{3}{2}x + c$ is used
			(expect $c = 18$) the method mark should be withheld until they $\times 2$.
	$\rightarrow k = 36 \text{ soi}$	A1	
		7	

9709/12

May/June 2018

9709_s18_ms_12

Question	Answer	Marks	Guidance
9(i)	$y = \frac{2}{3} \left(4x + 1 \right)^{\frac{3}{2}} \div 4 \left(+ C \right) \left(= \frac{\left(4x + 1 \right)^{\frac{3}{2}}}{6} \right)$	B1 B1	B1 without ÷ 4. B1 for ÷ 4 oe. Unsimplified OK
	Uses $x = 2, y = 5$	M1	Uses (2, 5) in an integral (indicated by an increase in power by 1).
	$\rightarrow c = \frac{1}{2}$ oe isw	A1	No isw if candidate now goes on to produce a straight line equation
		4	
9(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$		
	$\frac{dx}{dt} = 0.06 \div 3$	M1	Ignore notation. Must be 0.06÷3 for M1.
	= 0.02 oe	A1	Correct answer with no working scores 2/2
		2	
9(iii)	$\frac{d^2 y}{dx^2} = \frac{1}{2} \left(4x + 1 \right)^{-\frac{1}{2}} \times 4$	B1	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \times \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{4x+1}} \times \sqrt{4x+1} (=2)$	B1FT	Must either show the algebraic product and state that it results in a constant or evaluate it as '= 2'. Must not evaluate at $x = 2$. If to apply only if $\frac{d^2 y}{d^2 y}$ is of the form $k(4x+1)^{-\frac{1}{2}}$
			$\frac{1}{dx^2}$ is of the form $k(4x+1)$
		2	

Question	Answer	Marks	Guidance
10(i)	$2\cos x = -3\sin x \rightarrow \tan x = -\frac{2}{3}$	M1	Use of tan=sin/cos to get tan =, or other valid method to find sin or cos =. M0 for tanx = $+/-\frac{3}{2}$
	$\rightarrow x = 146.3^{\circ} \text{ or } 326.3^{\circ} \text{awrt}$	A1 A1FT	FT for 180 added to an incorrect first answer in the given range. The second A1 is withheld if any further values in the range $0^{\circ} \le x \le 360^{\circ}$ are given. Answers in radians score A0, A0.
		3	

Question	Answer	Marks	Guidance
10(ii)	No labels required on either axis. Assume that the diagram is 0° to 360° unless labelled otherwise. Ignore any part of the diagram outside this range.		
		B1	Sketch of $y = 2\cos x$. One complete cycle; start and finish at <u>top of curve</u> at roughly the same positive <i>y</i> value and go below the <i>x</i> axis by roughly the same distance. (Can be a poor curve but not straight lines.)
		B1	Sketch of $y=-3\sin x$ One complete cycle; start and finish on the <i>x</i> axis, must be inverted and go below and then above the <i>x</i> axis by roughly the same distance. (Can be a poor curve but not straight lines.)
		B1	Fully correct answer including the sine curve with clearly larger amplitude than cosine curve. Must now be reasonable curves.
			Note: Separate diagrams can score 2/3
		3	
10(iii)	x < 146.3°, x > 326.3°	B1FT B1FT	Does not need to include 0°, 360°. $$ from their answers in (i) Allow combined statement as long as correct inequalities if taken separately. SC For two correct values including ft but with \leq and \geq B1
		2	

Question	Answer	Marks	Guidance
11(i)	$y = \frac{x}{2} + \frac{6}{x} = 4 \to x = 2 \text{ or } 6$	B1 B1	Inspection or guesswork OK
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} - \frac{6}{x^2}$	B1	Unsimplified OK
	When $x = 2$, $m = -1 \rightarrow x + y = 6$ When $x = 6$, $m = \frac{1}{3} \rightarrow y = \frac{1}{3} x + 2$	[*] M1	Correct method for either tangent
	Attempt to solve simultaneous equations	DM1	Could solve BOTH equations separately with $y = x$ and get $x = 3$ both times.
	(3,3)	A1	Statement about $y = x$ not required.
		6	

Question	Answer	Marks	Guidance
11(ii)	$V = (\pi) \int \left(\frac{x^2}{4} + 6 + \frac{36}{x^2}\right) (dx)$	*M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx). Allow incorrect squaring. Not awarded for $\pi \int \left\{ 4 - \left(\frac{x}{2} + \frac{6}{x}\right) \right\}^2 dx$. Integration indicated by increase in any power by 1.
	Integration $\rightarrow \frac{x^3}{12} + 6x - \frac{36}{x}$	A2,1	3 things wanted —1 each error, allow + C. (Doesn't need π)
	Using limits ' <i>their 2</i> ' to ' <i>their 6</i> ' $(53\frac{1}{3}\pi, \frac{160}{3}\pi, 168 \text{ awrt})$	DM1	Evidence of their values 6 and 2 from (i) substituted into their integrand and then subtracted. $48 - \left(-\frac{16}{3}\right)$ is enough.
	Vol for line: integration or cylinder ($\rightarrow 64\pi$)	M1	Use of $\pi r^2 h$ or integration of 4^2 (could be from $\left\{4 - \left(\frac{x}{2} + \frac{6}{x}\right)\right\}^2$)
	Subtracts $\rightarrow 10\frac{2}{3}\pi$ oe $\left(e.g.\frac{32}{3}\pi, 33.5 \mathrm{awrt}\right)$	A1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

9709 s18 ms 12

Question	Answer	Marks	Guidance
11(ii)	OR		
	$V = (\pi) \int 4^2 - \left(\frac{x}{2} + \frac{6}{x}\right)^2 (dx)$	M1 [*] M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx) Integration indicated by increase in any power by 1.
	$= (\pi) \int 16 - \left(\frac{x^2}{4} + 6 + \frac{36}{x^2}\right) (dx)$		
	$= (\pi) \left[16x - \left(\frac{x^3}{12} + 6x - \frac{36}{x}\right) \right] (\mathrm{d}x)$	A2,1	$\operatorname{Or}\left[10x - \frac{x^3}{12} + \frac{36}{x}\right]$
	$=(\pi)(48-37\frac{1}{3})$	DM1	Evidence of their values 6 and 2 from (i) substituted
	$= 10\frac{2}{3}\pi \text{ oe}\left(\text{eg}\frac{32}{3}\pi, 33.5 \text{awrt}\right)$	A1	
		6	