Question	Answer		Marks	Guidance
1	573, 43 (or 043), 289		B1B1B1	Ignore incorrect numbers. But allow other correct use of table (i.e. $573,650,431$)
		Total:	3	
2(i)	$z=1.751$		B1	
	$\frac{103}{200} \pm z \sqrt{\frac{\frac{103}{200} \times\left(1-\frac{103}{200}\right)}{200}} \mathrm{oe}$		M1	all correct except for recognisable value of z, allow for one side only
	$=0.453$ to $0.577(3 \mathrm{sf})$ as final answer		A1	must be an interval
	Total:		3	
2(ii)	0.08 oe 8\%, 8/100		B1	
3	$10 \times 0.46^{2}(=2.116) \text { or } \frac{0.46}{\sqrt{10}}$		B1	SOI
	Total mass of ore $\sim \mathrm{N}(70,2.116)$ or$\sim \mathrm{N}\left(7,\left(\frac{0.46}{\sqrt{10}}\right)^{2}\right)$		B1	
	$\pm \frac{71-" 70 "}{\sqrt{" 2.116^{"}}} \text { or } \pm \frac{7.1-" 7.0 "}{0.46 / \sqrt{10}}(=0.687)$		M1	correct, using their sd or $\sqrt{ }$ (their var) e.g. allow $\frac{71-" 70 "}{4.6}$ for M1
	1 - ϕ ("0.687")		M1	for correct area consistent with their working
	$=0.246(3 \mathrm{sf})$		A1	
	Total:		5	

Question	Answer	Marks	Guidance
4(i)	$\bar{x}=6.7 / 200(=67 / 2000=0.0335)$	B1	
	$\mathrm{s}^{2}=\frac{200}{199} \times\left(\frac{0.2312}{200}-" 0.0335{ }^{\prime \prime}\right)$	M1	$\begin{equation*} \mathrm{s}^{2}=\frac{0.2312}{200}-0.0335^{2} \tag{M0} \end{equation*}$
	$=0.0000339(2)=27 / 796000$	A1	$=0.00003375$ A0
	Total:	3	
4(ii)	H_{0} : Pop mean level $=0.034$ H_{1} : Pop mean level $\neq 0.034$	B1	not just "mean", but allow just " μ "
	$\frac{\text { "030335"-0.034 }}{\frac{\sqrt{" 0.00003392 "}}{\sqrt{200}}}$	M1	must have $\sqrt{200}$ $\frac{0.0335-0.034}{\frac{\sqrt{00.00033755^{\prime}}}{\sqrt{200}}}$ M1
	$=-1.21(4)(3 \mathrm{sfs})(-1.22 \leftrightarrow-1.21)$	A1	$=-1.217$ (3 sfs) A1
	Comp with $z=-1.645$ (or $0.1124>0.05$)	M1	$0.112>0.05$ valid comparison z or areas
	No evidence that (mean) pollutant level has changed, accept H_{0} (if correctly defined)	A1FT	correct conclusion no contradictions SR: One tail test: B0, M1A1 as normal, M1 (comparison with 1.282 consistent signs) A0
	Total:	5	

Question	Answer		Marks	Guidance
5(i)(a)	$X \sim \mathrm{~N}(42,42)$		B1	stated or implied
	$\frac{39.5-" 42 "}{\sqrt{" 42 "}}(=-0.386)$		M1	allow with wrong or no cc
	$1-\phi$ ("-0.386") = ϕ ("0.386")		M1	correct area consistent with their working
	$=0.65(0)(3 \mathrm{sf})$		A1	
		Total:	4	
5(i)(b)	$42>$ (e.g. 15) or mean is large		B1	$\lambda>15$ or higher, $\lambda=$ large ignore subsequent work if not undermining what already written
		Total:	1	
5(ii)(a)	$Y \sim \operatorname{Po}(1.2)$		B1	stated or implied
	$1-\mathrm{e}^{-1.2}\left(1+1.2+\frac{1.2^{2}}{2}\right)$		M1	allow any λ allow one end error
	$=0.121(3 \mathrm{sf})$		A1	Using binomial: 0.119 SR B1
		Total:	3	
5(ii)(b)	$60 \times 0.02=1.2<5$ or mean is small		B1FT	or large n small p FT Poisson only
		Total:	1	

Question	Answer		Marks	Guidance
6 (i)	$k \int_{0}^{1}\left(x-x^{2}\right) \mathrm{d} x=1$		M1	Attempt integ $\mathrm{f}(x)$ and " $=1$ ", ignore limits
	$=k\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=1$		A1	correct integration, limits 0 and 1
	$=k\left[\begin{array}{ll}\frac{1}{2} & -\frac{1}{3}\end{array}\right]=1$ or $\frac{k}{6}=1$		A1	correctly obtained, no errors seen
		Total:	3	
6(ii)	$\mathrm{E}(X)=0.5$		B1	
	$6 \int_{0}^{1}\left(x^{3}-x^{4}\right) d x$		M1	Attempt integ $x^{2} \mathrm{f}(x)$, limits 0 to 1
	$\begin{aligned} & \left(=6\left[\frac{1}{4}-\frac{1}{5}\right]=0.3\right) \\ & " 0.3 "-" 0.5 "^{2} \end{aligned}$		M1	their int $x^{2} \mathrm{f}(x)$ - their $(\mathrm{E}(X))^{2}$ dep + ve result
	$=0.05(=1 / 20)$		A1	
		Total:	4	
6(iii)	$6 \int_{0.4}^{1}\left(x-x^{2}\right) \mathrm{d} x$		M1	ignore limits, eg M1 for $6 \int_{0.4}^{2}\left(x-x^{2}\right) \mathrm{d} x$
	$=6\left\{\frac{1}{2}-\frac{1}{3}-\left(\frac{0.4^{2}}{2}-\frac{0.4}{3}\right)\right\}$		A1FT	subst correct limits into correct integration
	$=0.648(=81 / 125)$		A1	condone incorrect " k " for A1
		Total:	3	

Question	Answer	Marks	Guidance
7(i)	H_{0} : Pop mean no. accidents $=5.64$ H_{1} : Pop mean no. accidents <5.64	B1	or " $=0.47$ (per month)" not just "mean", but allow just " λ " or " μ "
	Use of $\lambda=5.64$	B1	used in a Poisson calculation
	$=\mathrm{e}^{-5.64}\left(1+5.64+\frac{5.64{ }^{2}}{2}\right)$	M1	Allow incorrect λ in otherwise correct
	$=0.08(0)$	A1	
	Comp with 0.05	M1	Valid comparison (Poisson only), no contradictions.
	No evidence to believe mean no. of accidents has decreased; accept H_{0} (if correctly defined)	A1FT	Normal distribution: M0M0
	Total:	6	
7(ii)	Mean <0.47 but conclude that this is not so	B1	(Mean) no. of accidents reduced, but conclude not reduced. Must be in context.
	Total:	1	
7(iii)	(Need greatest x such that $\mathrm{P}(X \leqslant x)<0.05$) $\begin{aligned} & \mathrm{P}(X \leqslant 1)=\mathrm{e}^{-5.64}(1+5.64)=0.024 \\ & \mathrm{P}(X \leqslant 2)=0.08 \end{aligned}$	B1	Both, could be seen in (i)
	Hence rejection region is $X \leqslant 1$	B1	Can be implied
	$\begin{aligned} & \text { With } \lambda=12 \times 0.05=0.6 \\ & 1-\mathrm{P}(X \leqslant 1)=1-\mathrm{e}^{-0.6}(1+0.6) \end{aligned}$	M1	$\lambda=0.6$ and $1-\mathrm{P}(X \leqslant 1)$
	$=0.122(3 \mathrm{sf})$	A1	Normal scores 0
	Total:	4	

