

Question	Answer	Marks	Guidance
1	573, 43 (or 043), 289	B1B1B1	Ignore incorrect numbers. But allow other correct use of table (i.e. 573, 650, 431)
	Total:	3	
2(i)	z = 1.751	B1	
	$\frac{103}{200} \pm z \sqrt{\frac{103}{200} \times (1 - \frac{103}{200})}{200}}$ oe	M1	all correct except for recognisable value of <i>z</i> , allow for one side only
	= 0.453 to 0.577 (3 sf) as final answer	A1	must be an interval
	Total:	3	
2(ii)	0.08 oe 8%, 8/100	B1	
3	$10 \times 0.46^2 (= 2.116) \text{ or } \frac{0.46}{\sqrt{10}}$	B1	SOI
	Total mass of ore ~ N(70, 2.116) or ~N $\left(7, \left(\frac{0.46}{\sqrt{10}}\right)^2\right)$	B1	
	$\pm \frac{71 - 70''}{\sqrt{2.116''}}$ or $\pm \frac{7.1 - 7.0''}{0.46 / \sqrt{10}}$ (= 0.687)	M1	correct, using their sd or $\sqrt{\text{(their var)}}$ e.g. allow $\frac{71-70^{\circ}}{4.6}$ for M1
	1 – φ("0.687")	M1	for correct area consistent with their working
	= 0.246 (3 sf)	A1	
	Total:	5	

Question	Answer	Marks	Guidance
4(i)	$\overline{x} = 6.7/200 \ (= 67/2000 = 0.0335)$	B1	
	$s^{2} = \frac{200}{199} \times \left(\frac{0.2312}{200} - "0.0335"^{2}\right)$	M1	$s^2 = \frac{0.2312}{200} - 0.0335^2$ M0
	= 0.0000339(2) = 27/796000	A1	= 0.00003375 A0
	Total:	3	
4(ii)	H ₀ : Pop mean level = 0.034 H ₁ : Pop mean level $\neq 0.034$	B1	not just "mean", but allow just " μ "
	$\frac{"030335" - 0.034}{\sqrt{"0.00003392"}}$	M1	must have $\sqrt{200}$
	$\sqrt{200}$		$\frac{0.0335 - 0.034}{\frac{\sqrt{0.00003375''}}{\sqrt{200}}}$ M1
	$= -1.21(4) (3 \text{ sfs}) (-1.22 \leftrightarrow -1.21)$	A1	= -1.217 (3 sfs) A1
	Comp with $z = -1.645$ (or 0.1124>0.05)	M1	0.112 > 0.05 valid comparison <i>z</i> or areas
	No evidence that (mean) pollutant level has changed, accept H_0 (if	A1FT	correct conclusion no contradictions
			SR: One tail test: B0 , M1A1 as normal, M1 (comparison with 1.282 consistent signs) A0
	Total:	5	

Question	Answer	Marks	Guidance
5(i)(a)	$X \sim N(42, 42)$	B1	stated or implied
	$\frac{39.5 - "42"}{\sqrt{"42"}} \ (= -0.386)$	M1	allow with wrong or no cc
	$1 - \phi ("-0.386") = \phi ("0.386")$	M1	correct area consistent with their working
	= 0.65(0) (3 sf)	A1	
	Total:	4	
5(i)(b)	42 > (e.g. 15) or mean is large	B1	$\lambda > 15$ or higher, $\lambda = large$ ignore subsequent work if not undermining what already written
	Total:	1	
5(ii)(a)	$Y \sim \text{Po}(1.2)$	B1	stated or implied
	$1 - e^{-1.2}(1 + 1.2 + \frac{1.2^2}{2})$	M1	allow any λ allow one end error
	= 0.121 (3 sf)	A1	Using binomial: 0.119 SR B1
	Total:	3	
5(ii)(b)	$60 \times 0.02 = 1.2 < 5$ or mean is small	B1FT	or large <i>n</i> small <i>p</i> FT Poisson only
	Total:	1	

Question	Answer	Marks	Guidance
6(i)	$k \int_{0}^{1} (x - x^2) \mathrm{d}x = 1$	M1	Attempt integ $f(x)$ and "= 1", ignore limits
	$= k \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = 1$	A1	correct integration, limits 0 and 1
	$= k \left[\frac{1}{2} - \frac{1}{3} \right] = 1 \text{ or } \frac{k}{6} = 1$	A1	correctly obtained, no errors seen
	Total:	3	
6(ii)	E(X) = 0.5	B1	
	$6\int_{0}^{1} (x^3 - x^4) \mathrm{d}x$	M1	Attempt integ $x^2 f(x)$, limits 0 to 1
	$(= 6\left[\frac{1}{4} - \frac{1}{5}\right] = 0.3)$ "0.3" - "0.5" ²	M1	their int $x^2 f(x)$ – their $(E(X))^2$ dep +ve result
	= 0.05(=1/20)	A1	
	Total:	4	
6(iii)	$6\int_{0.4}^{1} (x-x^2) \mathrm{d}x$	M1	ignore limits, eg M1 for $6\int_{0.4}^{2} (x-x^2) dx$
	$= 6\left\{\frac{1}{2} - \frac{1}{3} - \left(\frac{0.4^2}{2} - \frac{0.4^3}{3}\right)\right\}$	A1FT	subst correct limits into correct integration
	= 0.648(= 81/125)	A1	condone incorrect "k" for A1
	Total:	3	

97May/June	2017	73
		-

Question	Answer	Marks	Guidance
7(i)	H ₀ : Pop mean no. accidents = 5.64 H ₁ : Pop mean no. accidents < 5.64	B1	or "= 0.47 (per month)" not just "mean", but allow just " λ " or " μ "
	Use of $\lambda = 5.64$	B1	used in a Poisson calculation
	$= e^{-5.64} \left(1 + 5.64 + \frac{5.64^2}{2} \right)$	M1	Allow incorrect λ in otherwise correct
	= 0.08(0)	A1	
	Comp with 0.05	M1	Valid comparison (Poisson only), no contradictions.
	No evidence to believe mean no. of accidents has decreased; accept H_0 (if correctly defined)	A1FT	Normal distribution: M0M0
	Total:	6	
7(ii)	Mean < 0.47 but conclude that this is not so	B1	(Mean) no. of accidents reduced , but conclude not reduced. Must be in context.
	Total:	1	
7(iii)	(Need greatest x such that $P(X \le x) < 0.05$) $P(X \le 1) = e^{-5.64} (1 + 5.64) = 0.024$ $P(X \le 2) = 0.08$	B1	Both, could be seen in (i)
	Hence rejection region is $X \leq 1$	B1	Can be implied
	With $\lambda = 12 \times 0.05 = 0.6$, $1 - P(X \le 1) = 1 - e^{-0.6}(1 + 0.6)$	M1	$\lambda = 0.6 \text{ and } 1 - P(X \le 1)$
	= 0.122 (3 sf)	A1	Normal scores 0
	Total:	4	