

Question	Answer		Marks	Guidance
3(i)	Est $(\mu)=923 / 400$ or 2.3075 or $2.31(3 \mathrm{sf})$		B1	
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{400}{399}\left(\frac{3170}{400}-22.3075 "^{2}\right) \mathrm{OE}$		M1	
	$=2.60696 \quad$ or $2.61(3 \mathrm{sf})$		A1	(Note: Biased Var $=2.600$ scores M0)
		Total:	3	
3(ii)	H_{0} : Pop mean $($ or $\mu)=" 2.31$ " or "2310" H_{1} : Pop mean $($ or $\mu)>" 2.31$ " or " 2310 "		B1 FT	
	$\pm \frac{2.6-" 2.310^{\prime \prime}}{\sqrt{2.60696 \div 50}}=1.27$		M1 A1	Standardising using their values, Accept 1.28
	Comp 1.645 (OE)		M1	Valid comparison z values or areas
	No evidence that incomes in the region greater		A1 FT	OE FT their z. No contradictions (No FT for 2 tail test - max score B0 M1 A1 M1 for comp 1.96 A0) Note: Accept alternative CV method
		Total:	5	

Question	Answer	Marks	Guidance
4(i)	$0.75^{20}+20 \times 0.75^{19} \times 0.25+{ }^{20} \mathrm{C}_{2} \times 0.75^{18} \times 0.25^{2}$	M1	No end errors
	$=0.0913$	A1	As final answer
	Total:	2	
4(ii)	H_{0} : Pop proportion=0.25 H_{1} : Pop proportion <0.25	B1	Allow p or π, not "proportion" (Accept anywhere in the question)
	$0.75^{25}+25 \times 0.75^{24} \times 0.25$	M1	Must be $\mathrm{B}(25,0,25)$ No end errors
	$=0.00702$	A1	
	comp 0.01	M1	Valid comparison
	There is evidence that the claim is not justified	A1 FT	OE. No contradictions
	Total:	5	

Question	Answer		Marks	Guidance
5(i)	$\begin{aligned} & 0.5 \times 1 \times h=0.25 \\ & h=0.5 \\ & \operatorname{grad}=0.5 \end{aligned}$		M1	$\mathrm{P}(X<2)=4 \times \mathrm{P}(X<1) \quad$ M1
	$\mathrm{f}(x)=0.5 x$		A1	$\begin{align*} & \mathrm{P}(X<2)=1 \tag{A1}\\ & a=2 \end{align*}$
	$0.5 \times a \times 0.5 a=1$		M1	$\begin{aligned} & 0.5 \times 2 \times h^{\prime}=1 \\ & h^{\prime}=1 \end{aligned}$
	$a=2$		A1	$\operatorname{grad}=0.5$
	$\mathrm{P}(X<2)=1$		A1	$\mathrm{f}(x)=0.5 x \quad$ A1
		Total:	5	
5(ii)	$\int_{0}^{m} 0.5 x d x=0.5$		M1	Attempt $\int \mathrm{f}(x) \mathrm{d} x=0.5 \quad$ Ignore limits
	$=\left[\frac{x^{2}}{4}\right]_{0}^{m}=0.5$		A1FT	Correct integration $(\mathrm{ft} \mathrm{f}(x)) \&$ limits $=0.5$
	$m=\sqrt{2}$ or $1.41(3 \mathrm{sf})$		A1	or by similarity $m=\frac{1}{\sqrt{2}} \times 2 \quad$ M2 $=\sqrt{2}$ A1
		Total:	3	

Question	Answer		Marks	Guidance
6(i)	$e^{-2.4} \times \frac{2.42^{2}}{2!}$		M1	Allow incorrect λ
	$=0.261(3 \mathrm{sfs})$		A1	
		Total:	2	
6(ii)	$\mathrm{N}(60,60)$		B1	seen or implied
	$\frac{54.5-60}{\sqrt{60}} \quad(=-0.710)$		M1	allow with wrong or missing cc
	$1-\phi("-0.710$ " $)=\phi($ "0.710" $)$		M1	For area consistent with their working
	$=0.761(3 \mathrm{sf})$		A1	
		Total:	4	
6(iii)	$\lambda=3.6+12 \div 7(=186 / 35) \quad(=5.314)$		M1	
	$e^{-5.314}\left(1+5.314+\frac{5.314^{2}}{2}+\frac{5.314^{3}}{3!}\right)$		M1	Allow incorrect λ. Allow one end error.
	$=0.224(3 \mathrm{sfs})$		A1	
		Total:	3	

Question	Answer		Marks	Guidance
7(a)	$\begin{aligned} & \mathrm{E}\left(X_{1}+X_{2}\right)=2 \times 4.2=8.4 \\ & \operatorname{Var}\left(X_{1}+X_{2}\right)=2 \times 1.1^{2}=2.42 \end{aligned}$		B1	Both. Seen or implied (or sd $=1.56$)
	$\frac{10-8.4}{\sqrt{2.42}} \quad(=1.029)$		M1	Standardising with their mean and var (no sd / var mix)
	$1-\phi(" 1.029$ ")		M1	For area consistent with their working
	$=0.152(3 \mathrm{sf})$		A1	
		Total:	4	
7(b)	$\mathrm{E}(X)=20.5$		B1	
	$\operatorname{Var}(X)=105+0.5^{2} \times 15 \quad(=108.75)$		M1	correct expression oe
	$\frac{0-20.5{ }^{\prime \prime}}{\sqrt{\prime 108.75 "}} \quad(=-1.966)$		M1	correct standardisation using their $\mathrm{E} \& \mathrm{~V}$ (no sd/var mix) ignore any attempted cc
	$\begin{aligned} & \phi("-1.966 ")=1-\phi(" 1.966 ") \\ & (=(1-0.9754)) \end{aligned}$		M1	For area consistent with their working
	$=0.0246 \quad$ or $2.46 \% \quad(3 \mathrm{sf})$		A1	Accept 0.0247
		Total:	5	

