Question	Answer		Marks	Guidance
1(i)	Poisson with $\lambda=0.2$		B1	
	$1-\mathrm{e}^{-0.2}\left(1+0.2+\frac{0.2^{2}}{2}\right)$		M1	1 - Poisson $\mathrm{P}(0,1,2,3)$ attempted, any λ, allow one end error
	$=0.00115(3 \mathrm{sf})$		A1	SR: using Bin, ans 0.00115: B1
		Total:	3	
1(ii)	n large ($\mathrm{n}>50$)		B1	
	$n p=0.2<5$ or p small		B1	
		Total:	2	
2	Assume sd still $=3.8$		B1	or sd unchanged
	$\mathrm{H}_{0}: \mu=64.0 \quad \mathrm{H}_{1}: \mu<64.0$		B1	
	$\frac{63.3-64.0}{\frac{38}{\sqrt[3]{100}}}$		M1	Standardising with their values (no sd / var mixes) Must have $\sqrt{ } 100$
	$=-1.842$		A1	
	$\begin{aligned} & \text { comp "1.842" with } z \text {-value } \\ & " 1.842 "<1.96 \end{aligned}$		M1	comp +ve with + ve or -ve with -ve or comp Φ ("1.842") with 0.975 $0.9672<0.975$ OE
	No evidence that heights are shorter		A1FT	OE FT their $z_{\text {calc }}$
		Total:	6	

Question	Answer		Marks	Guidance
3(a)	$7.1 \pm z \times \sqrt{\frac{2.6}{75}}$		M1	Expression of correct form must be z (note MR var $=2.6^{2}$ can score M1) seen
	$z=1.751$		B1	
	6.77 to 7.43 (3 sfs)		A1	Must be an interval
		Total:	3	
3(b)	$0.04{ }^{3}$		M1	Allow 0.08^{3} for M1
	$=0.000064$		A1	
		Total:	2	
3(c)	e.g. Particular day or time of day		B1	Allow "Not random"
		Total:	1	
4(i)	Greater area where $x<7.5$ than $x>7.5$		B1	Allow Graph higher for $x<7.5$ than for $x>7.5$ or Graph decreasing or equiv expl'n
		Total:	1	
4(ii)	$\int_{5}^{10} \frac{k}{x^{2}} \mathrm{~d} x=1$		M1	Attempt Integ $\mathrm{f}(x)=1$ ignore limits
	$\begin{aligned} & k\left[-\frac{1}{x}\right]_{5}^{10}=1 \\ & k \times \frac{1}{10}=1 \end{aligned}$		A1	Correct integration and limits
	$k=10 \quad \mathrm{AG}$		A1	No errors seen
		Total:	3	

Question	Answer		Marks	Guidance
4(iii)	$10 \int_{5}^{10} \frac{1}{x} \mathrm{~d} x$		M1	Attempt Integ $x \mathrm{f}(x)$ ignore limits
	$\begin{aligned} & =10[\ln x]_{5}^{10} \\ & =10(\ln 10-\ln 5) \end{aligned}$		M1	Correct integration and limits
	$=10 \ln 2$ or $6.93(3 \mathrm{sf})$		A1	OE
		Total:	3	
4(iv)	$10 \int_{5}^{10} 1 \mathrm{~d} x-" 6.93 "^{2}$		M1	Attempt (Integ $\left.\mathrm{x}^{2} \mathrm{f}(\mathrm{x})\right)^{-(\mathrm{E}(\mathrm{x}))^{2} \text {. No limits M0 }}$
	$=1.95$ (accept 1.96)		A1	Use of 6.93 gives 1.97 A0
		Total:	2	
5(i)	$W \sim \mathrm{~N}(6210,171.88)$		B2	seen or implied. B1 each parameter
	$\frac{6200-" 6210 "}{\sqrt{171.88 "}} \quad(=-0.763)$		M1	Standardising with their values. No sd/var mix
	$1-\Phi(" 0.763 ")$		M1	For area consistent with their mean
	$=0.223$ (3 sfs)		A1	
		Total:	5	

Question	Answer	Marks	Guidance
5(ii)	$\mathrm{E}(\mathrm{C}-2 \mathrm{~B})=-50$	M1	"6210"-2(3130) (or E (2B-C) $=50$
	$\begin{aligned} & \operatorname{Var}(\mathrm{C}-2 \mathrm{~B})=" 171.88^{2}+2^{2} \times 12.1^{2} \\ &(=757.52) \end{aligned}$	M1	
	$\frac{0-(-50)}{\sqrt{ } 7757.52 "} \quad(=1.817)$	M1	Standardising with their values
	$\Phi(" 1.817 \times)$	M1	For area consistent with their mean
	$=0.965$ (3 sfs)	A1	
	Total:	5	
6(i)	mean $=6.6$	B1	B1 for 6.6 (could be scored in iii)
	$\mathrm{P}(X \leqslant 1)=\mathrm{e}^{-6.6}(1+6.6)=0.0103$	M1	Allow incorrect λ in both probs
	$\mathrm{P}(X \leqslant 2)=\mathrm{e}^{-6.6}\left(1+6.6+\frac{6.6^{2}}{2}\right)=0.0400$	M1A1	A1 for both values
	CR is $X \leqslant 1$	DA1	Dep on at least one M
	$\mathrm{P}($ Type I error $)=\mathrm{P}(X \leqslant 1)=0.0103$	B1FT	FT their $\mathrm{P}(X \leqslant 1)$
	Total:	6	
6(ii)	Wrongly concluding that (mean) no of (sports) injuries has decreased	B1	Must be in context
	Total:	1	

Question	Answer	Marks	Guidance
6(iii)	$\mathrm{H}_{0}: \lambda=6.6 \mathrm{H}_{1}: \lambda<6.6$	B1	Can be scored in (i). Allow μ or $\lambda / 1.1$ or 6.6 or $\mathrm{P}(X \leqslant 2)=0.0400>0.02$
	2 not in CR	M1	
	No evidence mean no. of injuries has decreased	A1FT	
	Total:	3	
6(iv)	$\mathrm{N}(39.6,39.6)$	B1	May be implied
	$\frac{29.5-39.6}{\sqrt{39.6}} \quad(=-1.605)$	M1	Allow with wrong or no cc
	$\Phi\left(\right.$ "-1.605") = $1-\Phi\left({ }^{\prime} 1.605\right.$ ")	M1	For area consistent with their mean
	$=0.0543$ (3 sfs)	A1	
	Total:	4	

