Question	Answer	Marks	Guidance
1	$\mathrm{P}(6)=0.3$	B1	SOI
	$\mathrm{P}($ sum is 9$)=\mathrm{P}(3,6)+\mathrm{P}(4,5)+\mathrm{P}(5,4)+\mathrm{P}(6,3)$	M1	Identifying the four ways of summing to $9(3,6),(6,3)(4,5)$ and $(5,4)$
	$=(0.03+0.02) \times 2$	M1	Mult 2 probs together to find one correct prob of $(3,6),(6,3)$ $(4,5)$ or $(5,4)$ unsimplified
	$=0.1$	A1	OE
	Total:	4	
2	$n p=270 \times 1 / 3=90, n p q=270 \times 1 / 3 \times 2 / 3=60$	B1	Correct unsimplified $n p$ and $n p q$, SOI
	$\mathrm{P}(x>100)=\mathrm{P}\left(z>\frac{99.5-90}{\sqrt{60}}\right)=\mathrm{P}(z>1.2264)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	\pm Standardising using 100 need sq rt Continuity correction, 99.5 or 100.5 used
	$=1-0.8899$	M1	Correct area $1-\Phi$ implied by final prob. <0.5
	$=0.110$	A1	
	Total:	5	
3(i)	$\mathrm{P}(S)=0.65 \times 0.6+0.35 \times 0.75$	M1	Summing two 2-factor probs or 1 - (sum of two 2-factor probs)
	$=0.653(261 / 400)$	A1	
	Total:	2	

Question	Answer	Marks	Guidance
3(ii)	$\mathrm{P}(S t d \mid L)=\frac{P(S t d \cap L)}{P(L)}=\frac{0.35 \times 0.25}{1-0.6525}=0.0875 / 0.3475$	M1 M1	P(Std)' $\times{ }^{\prime} \mathrm{P}(\mathrm{L} / \mathrm{Std})^{\prime}$ as num of a fraction. Could be from tree diagram in 3(i). Denominator (1-their (i)) or their (i) or 0.65×0.4 (or 0.6$)+0.35 \times 0.25($ or 0.75$)=0.26+0.0875$ or $\mathrm{P}(\mathrm{L})$ from their tree diagram
	$=0.252(35 / 139)$	A1	
	Total:	3	
4(a)	$\begin{aligned} & \mathrm{P}(x>0)=\mathrm{P}\left(z> \pm \frac{0-\mu}{\sigma}\right) \\ & =\mathrm{P}\left(z>\frac{-\mu}{\mu / 1.5}\right) \text { or } \mathrm{P}\left(z>\frac{-1.5 \sigma}{\sigma}\right) \end{aligned}$	M1	\pm Standardising, in terms of μ and/or σ with $0-\ldots$. in numerator, no continuity correction, no $\sqrt{ }$
	$=\mathrm{P}(z>-1.5)$	A1	Obtaining z value of ± 1.5 by eliminating μ and σ, SOI
	$=0.933$	A1	
	Total:	3	
4(b)	$z=-1.151$	B1	$\pm z$ value rounding to 1.1 or 1.2
	$-1.151=\frac{70-120}{s}$	M1	\pm Standardising (using 70) equated to a z-value, no cc, no squaring, no $\sqrt{ }$
	$\sigma=43.4$ or 43.5	A1	
	Totals:	3	

Question	Answer	Marks	Guidance
5(i)	constant probability (of completing)	B1	Any one condition of these two
	independent trials/events	B1	The other condition
	Totals:	2	
5(ii)	$\mathrm{P}(5,6,7)={ }^{7} \mathrm{C}_{5}(0.7)^{5}(0.3)^{2}+{ }^{7} \mathrm{C}_{6}(0.7)^{6}(0.3)^{1}+(0.7)^{7}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Bin term ${ }^{7} \mathrm{C}_{x}(0.7)^{x}(0.3)^{7-x}, x \neq 0,7$ Correct unsimplified answer (sum) OE
	$=0.647$	A1	
	Total:	3	
5(iii)	$\mathrm{P}(0,1,2,3,4)=1-$ their ${ }^{\prime} 0.6471 '=0.3529$	M1	Find $\mathrm{P}(\leqslant 4)$ either by subtracting their (ii) from 1 or from adding Probs of $0,1,2,3,4$ with $n=7$ (or 10) and $p=0.7$
	$\mathrm{P}(3)={ }^{10} \mathrm{C}_{3}(0.3529)^{3}(0.6471)^{7}$	M1	${ }^{10} \mathrm{C}_{3}($ their 0.353$){ }^{3}(1-$ their 0.353$){ }^{7}$ on its own
	$=0.251$	A1	
6(a)(i)	First digit in 2 ways. $2 \times 4 \times 3 \times 2$ or $2 \times 4 \mathrm{P} 3$	M1	1,2 or $3 \times 4 \mathrm{P} 3 \mathrm{OE}$ as final answer
	Total $=48$ ways	A1	
	Total:	2	
6(a)(ii)	$2 \times 5 \times 5 \times 3$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	Seeing 5^{2} mult; this mark is for correctly considering the middle two digits with replacement Mult by 6; this mark is for correctly considering the first and last digits
	$=150$ ways	A1	
	Totals:	3	

Guidance

Question	Answer	Marks	Guidance
6(b)(i)	$\mathrm{OO}^{* * * *}$ in ${ }^{18} \mathrm{C}_{4}$ ways	M1	${ }^{18} \mathrm{C}_{\mathrm{x}}$ or the sum of five 2-factor products with $n=14$ and 4, may be \times by 2 C 2 : $\begin{aligned} & 4 \mathrm{C} 0 \times 14 \mathrm{C} 4+4 \mathrm{C} 1 \times 14 \mathrm{C} 3+4 \mathrm{C} 2 \times 14 \mathrm{C} 2+4 \mathrm{C} 3 \times 14 \mathrm{C} 1+4 \mathrm{C} 4 \\ & (\times 14 \mathrm{C} 0) \end{aligned}$
	$=3060$	A1	
	Totals:	2	

Question	Answer			Marks	Guidance
6(b)(ii)	Choc 0 OR 1 Choc 0 0 0 1 1 1 2 2 2	$\begin{gathered} 6=1 \times \\ 5={ }^{4} \mathrm{C}_{1} \times \\ 4={ }^{4} \mathrm{C}_{2} \times \end{gathered}$ Oats 0 1 2 0 1 2 0 1	$\begin{gathered} 80.2066 \\ 720.4508 \\ 200.2817 \\ \text { Ginger } \\ 6 \\ 5 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 3 \\ 2 \end{gathered}$	B1	The correct number of ways with one of 0,1 or 2 chocs , unsimplified or any three correct number of ways of combining choc/oat/ginger, unsimplified
	Total $=36400$ ways			M1	sum the number of ways with 0,1 and 2 chocs and two must be totally correct, unsimplified OR sum the nine combinations of choc, ginger, oats, six must be totally correct, unsimplified
	Probability $=36400 /{ }^{20} \mathrm{C}_{6}$			M1	dividing by ${ }^{20} \mathrm{C}_{6}$ (38760) oe
	$=0.939$ (910/969)			A1	
	Totals:			4	
7(i)	$\mathrm{freq}=\mathrm{fd} \times \mathrm{cw} 10,40,120,30$			$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Attempt to multiply at least 3 fds by their 'class widths'
	Totals:			2	

