97**May/June 2017**62

Question	Answer	Marks	Guidance
1(i)	$4 \times 5.5 + 3x + 90 = 8 \times 29$	M1	An expression to work out total cost of individual items = $8 \times$ mean, <i>x</i> may be implied.
	$ \begin{array}{r} 112 + 3x = 232 \\ x = 40 \end{array} $	A1	Correct complete unsimplified expression / calculation
	(Cost = \$)40	A1	Units not required
	Total:	3	
1(ii)	sd = 0 so all cost the same	M1	Must see comment interpreting $sd = 0$, OE
	shirts $\cos t 4 \times \$26 = \104 AG	A1	See $4 \times 26 , $$130 - 26 OE. Must have a final value of $$104$ stated
	Total:	2	
2(i)	med = 3.2	B1	Accept 3.2 ± 0.05
	$UQ = 3.65 \le uq \le 3.7 LQ = 2.55 \le lq \le 2.6$	M1	UQ – LQ, UQ greater than <i>their</i> 'median', LQ less than <i>their</i> 'median'
	$IQR = 1.05 \leq iqr \leq 1.15$	A1	Correct answer from both LQ and UQ in given ranges
	Total:	3	
2(ii)	134 - 24 = 110	B1	Accept $108 \le n \le 112$, <i>n</i> an integer
	Total:	1	

Question	Answer	Marks	Guidance
2(iii)	200 - 12 = 188 less than length <i>l</i>	M1	188 seen, can be implied by answer in range, mark on graph.
	l = 4.5 cm	A1	Correct answer accept $4.4 \le l \le 4.5$
	Total:	2	
3(i)	$k(-2)^2$ is the same as $k(2)^2 = 4k$	B1	need to see $-2^2 k$, $2^2 k$ and $4k$, algebraically correct expressions OE
	Total:	1	
3(ii)	x -2 -1 2 4 Prob $4k$ k $4k$ $16k$	B1	-2, -1, 2, 4 only seen in a table, together with at least one attempted probability involving <i>k</i>
	4k + k + 4k + 16k = 1	M1	Summing 4 probs equating to 1. Must all be positive (table not required)
	$k = 1/25 \ (0.04)$	A1	CWO
	Total:	3	
3(iii)	E(X) = -8k + -k + 8k + 64k = 63k	M1	using Σpx unsimplified. FT their k substituted before this stage, no inappropriate dividing
	= 63/25 (2.52)	A1	
	Total:	2	

97**May/June 2017**62

Question	Answer	Marks	Guidance
4	P(score is 6) = P(3, 3)	M1	Realising that score 6 is only P(3, 3)
	$= r^{2} = 1/36$ r = 1/6	A1	Correct ans [SR B2 $r = 1/6$ without workings]
	P(2, 3) + P(3, 2) = 1/9 $qr + rq = 1/9$	M1	Eqn involving qr (OE) equated to 1/9 (r may be replaced by <i>their</i> 'r value')
	q/6 + q/6 = 1/9	M1	Correct equation with <i>their</i> 'r value' substituted
	q = 1/3	A1	Correct answer seen, does not imply previous M's
	p = 1 - 1/6 - 1/3 = 1/2	B1 FT	FT their p + their r + their $q = 1$, 0
	Total:	6	
5(i)	$(z=)\frac{4.2-3.9}{\sigma}$	M1	Standardising, not square root of σ , not σ^2
	z = 0.916 or 0.915	B1	Accept $0.915 \leq \pm z \leq 0.916$ seen
	$\sigma = 0.328$	A1	Correct final answer (allow 20/61 or 75/229)
	Total:	3	

97**May/June 2017**62

Question	Answer	Marks	Guidance
5(ii)	z = 4.4 - 3.9/their 0.328 or z = 3.4 - 3.9/their 0.328 = 1.5267 = -1.5267	M1	Standardising attempt with 3.4 or 4.4 only, allow square root of σ , or σ^2
	$\Phi = 0.9364$	A1	$0.936 \leqslant \Phi \leqslant 0.937$ or $0.063 \leqslant \Phi \leqslant 0.064$ seen
	$Prob = 2\Phi - 1 = 2(0.9364) - 1$	M1	Correct area $2\Phi - 1OE$ i.e. $\Phi = -(1 - \Phi)$, linked to final solution
	= 0.873	A1	Correct final answer from $0.9363 \le \Phi \le 0.9365$
	Total:	4	
5(iii)	dividing (0.5) by a larger number gives a smaller <i>z</i> -value or more spread out as sd larger or use of diagrams	*B1	No calculations or calculated values present e.g. (σ =)0.656 seen Reference to spread or <i>z</i> value required
	Prob is less than that in (ii)	DB1	Dependent upon first B1
	Total:	2	
6(i)	<i>EITHER</i> : Route 1 $A^{*******}A$ in 9! / 2!2!5! = 756 ways	(*M1	Considering AA and BB options with values
	$B^{*******B}$ in 9! / 4!5! = 126 ways	A1	Any one option correct
	756 + 126	DM1	Summing their AA and BB outcomes only
	Total = 882 ways	A1)	

Question	Answer	Marks	Guidance
	<i>OR1:</i> Route 2 $A^{*******}A$ in ${}^{9}C_{5} \times {}^{4}C_{2} = 756$ ways	(M1	Considering AA and BB options with values
	$B^{*******B}$ in ${}^{9}C_{4} \times {}^{5}C_{5} = 126$ ways	A1	Any one option correct
	756 + 126	DM1	Summing their AA and BB outcomes only
	Total = 882	A1)	
	Total:	4	

Question	Answer	Marks	Guidance
6(ii)	<i>EITHER:</i> (The subtraction method) <i>A</i> s together, no restrictions 8! / 2!5! = 168	(*M1	<i>Considering all As together</i> – 8! seen alone or as numerator – condone × 4! for thinking A's not identical
	As together and Bs together $7! / 5! = 42$	M1	<i>Considering all As together and all Bs together</i> – 7! seen alone or numerator
		M1	<i>Removing repeated Bs or Cs</i> – Dividing by 5! either expression or 2! 1st expression only – OE
	Total 168 – 42	DM1	Subt their 42 from their 168 (dependent upon first M being awarded)
	= 126	A1)	
	<i>OR1:</i> As together, no restrictions ${}^{8}C_{5} \times {}^{3}C_{1} = 168$	(*M1	⁸ C ₅ seen alone or multiplied
		M1	⁷ C ₅ seen alone or multiplied
	As together and Bs together ${}^{7}C_{5} \ge {}^{2}C_{1} = 42$	M1	First expression x ${}^{3}C_{1}$ or second expression x ${}^{2}C_{1}$
	Total 168 – 42	DM1	Subt their 42 from their 168 (dependent upon first M being awarded)
	= 126	A1)	
	OR2: (The intersperse method)	(M1	<i>Considering all "As together" with Cs</i> – Mult by 6!
	(AAAA)CCCCC then intersperse B and another B	M1	<i>Removing repeated Cs</i> – Dividing by 5!– [Mult by 6 implies M2]
		*M1	Considering positions for Bs – Mult by 7P2 oe –

Question	Answer	Marks	Guidance
Question	$\frac{6!}{5!} \times 7 \times 6 \div 2$	DM1	Dividing by 2! Oe – removing repeated <i>B</i> s (dependent upon 3rd M being awarded)
	= 126	A1)	
	Total:	5	
7(i)	$P(H) = P(BH) + P(SH) = 0.6 \times 0.05 + 0.4 \times 0.75$	M1	Summing two 2-factor probs using 0.6 with 0.05 or 0.95, and 0.4 with 0.75 or 0.25
	$= 0.330 \text{ or } \frac{33}{100}$	A1	Correct final answer accept 0.33
	Total:	2	
7(ii)	$P(S H) = \frac{P(S \cap H)}{P(H)} = \frac{0.4 \times 0.75}{0.33} = \frac{0.3}{0.33}$	M1 FT	Their $\frac{P(S \cap H)}{P(H)}$ unsimplified, FT from (i)
	$=\frac{10}{11}$ or 0.909	A1	
	Total:	2	
7(iii)	Var (B) = $45 \times 0.6 \times 0.4$ Var (S)= $45 \times 0.4 \times 0.6$	B1	One variance stated unsimplified
	Variances same	B1	Second variance stated unsimplified and at least one variance clearly identified, and both evaluated <i>or</i> showing equal <i>or</i> conclusion made
			SR B1 – Standard Deviation calculated Fulfil all the criteria for the variance method but calculated to Standard Deviation
	Total:	2	

9709/62

Question	Answer	Marks	Guidance
7(iv)	$1 - P(0, 1) = 1 - [(0.6)^{10} + {}^{10}C_1(0.4)(0.6)^9] = 1 - 0.0464$ OR $P(2,3,4,5,6,7,8,9,10) = {}^{10}C_2(0.4)^2(0.6)^8 + \dots + {}^{10}C_9(0.4)^9(0.6) + (0.4)^{10}$		Bin term ${}^{10}C_x p^x (1-p)^{10-x} 0Correct unsimplified answer$
	= 0.954	A1	
	Total:	3	