Question	Answer		Marks	Guidance
1(i)	$4 \times 5.5+3 x+90=8 \times 29$		M1	An expression to work out total cost of individual items $=8 \times$ mean, x may be implied.
	$\begin{aligned} & 112+3 x=232 \\ & x=40 \end{aligned}$		A1	Correct complete unsimplified expression / calculation
	$($ Cost $=\$) 40$		A1	Units not required
		Total:	3	
1(ii)	$\mathrm{sd}=0$ so all cost the same		M1	Must see comment interpreting sd $=0, \mathrm{OE}$
	shirts cost $4 \times \$ 26=\$ 104$ AG		A1	See $4 \times \$ 26, \$ 130-\$ 26$ OE. Must have a final value of $\$ 104$ stated
		Total:	2	
2(i)	med $=3.2$		B1	Accept 3.2 ± 0.05
	$\mathrm{UQ}=3.65 \leqslant \mathrm{uq} \leqslant 3.7 \mathrm{LQ}=2.55 \leqslant 1 \mathrm{q} \leqslant 2.6$$\mathrm{IQR}=1.05 \leqslant \mathrm{iqr} \leqslant 1.15$		M1 A1	UQ - LQ, UQ greater than their 'median', LQ less than their 'median' Correct answer from both LQ and UQ in given ranges
		Total:	3	
2(ii)	$134-24=110$		B1	Accept $108 \leqslant n \leqslant 112, n$ an integer
		Total:	1	

Question	Answer						Marks	Guidance
2(iii)	$200-12=188$ less than length l						M1	188 seen, can be implied by answer in range, mark on graph.
	$l=4.5 \mathrm{~cm}$						A1	Correct answer accept $4.4 \leqslant l \leqslant 4.5$
						Total:	2	
3(i)	$k(-2)^{2}$ is the same as $k(2)^{2}=4 k$						B1	need to see $-2^{2} k, 2^{2} k$ and $4 k$, algebraically correct expressions OE
						Total:	1	
3(ii)	x	-2	-1	2	4		B1	$-2,-1,2,4$ only seen in a table, together with at least one
	Prob	$4 k$	k	$4 k$	16k			
	$4 k+k+4 k+16 k=1$						M1	Summing 4 probs equating to 1 . Must all be positive (table not required)
	$k=1 / 25(0.04)$						A1	CWO
						Total:	3	
3(iii)	$\mathrm{E}(X)=-8 k+-k+8 k+64 k=63 k$						M1	using $\Sigma p x$ unsimplified. FT their k substituted before this stage, no inappropriate dividing
	$=63 / 25(2.52)$						A1	
						Total:	2	

Question	Answer		Marks	Guidance
4	$\mathrm{P}($ score is 6$)=\mathrm{P}(3,3)$		M1	Realising that score 6 is only $\mathrm{P}(3,3)$
	$\begin{aligned} & =r^{2}=1 / 36 \\ & r=1 / 6 \end{aligned}$		A1	Correct ans [SR B2 $r=1 / 6$ without workings]
	$\begin{aligned} & \mathrm{P}(2,3)+\mathrm{P}(3,2)=1 / 9 \\ & q r+r q=1 / 9 \end{aligned}$		M1	Eqn involving $q r$ (OE) equated to $1 / 9$ (r may be replaced by their 'r value')
	$q / 6+q / 6=1 / 9$		M1	Correct equation with their 'r value' substituted
	$q=1 / 3$		A1	Correct answer seen, does not imply previous M's
	$p=1-1 / 6-1 / 3=1 / 2$		B1 FT	FT their $p+$ their $r+$ their $q=1,0<p<1$
		Total:	6	
5(i)	$(z=) \frac{4.2-3.9}{\sigma}$		M1	Standardising, not square root of σ, not σ^{2}
	$z=0.916$ or 0.915		B1	Accept $0.915 \leqslant \pm z \leqslant 0.916$ seen
	$\sigma=0.328$		A1	Correct final answer (allow 20/61 or $75 / 229$)
		Total:	3	

Question	Answer	Marks	Guidance
5(ii)	$\begin{aligned} & z=4.4-3.9 / \text { their } 0.328 \text { or } z=3.4-3.9 / \text { their } 0.328 \\ & =1.5267 \quad=-1.5267 \end{aligned}$	M1	Standardising attempt with 3.4 or 4.4 only, allow square root of σ, or σ^{2}
	$\Phi=0.9364$	A1	$0.936 \leqslant \Phi \leqslant 0.937$ or $0.063 \leqslant \Phi \leqslant 0.064$ seen
	Prob $=2 \Phi-1=2(0.9364)-1$	M1	Correct area $2 \Phi-1 \mathrm{OE}$ i.e. $\Phi=-(1-\Phi)$, linked to final solution
	$=0.873$	A1	Correct final answer from $0.9363 \leqslant \Phi \leqslant 0.9365$
	Total:	4	
5(iii)	dividing (0.5) by a larger number gives a smaller z-value or more spread out as sd larger or use of diagrams	*B1	No calculations or calculated values present e.g. $(\sigma=) 0.656$ seen Reference to spread or z value required
	Prob is less than that in (ii)	DB1	Dependent upon first B1
	Total:	2	
6(i)	EITHER: Route 1 $A^{* * * * * * * * *} A \text { in } 9!/ 2!2!5!=756 \text { ways }$	(*M1	Considering $A A$ and $B B$ options with values
	$B^{* * * * * * * * * B}$ in $9!/ 4!5!=126$ ways	A1	Any one option correct
	$756+126$	DM1	Summing their $A A$ and $B B$ outcomes only
	Total $=882$ ways	A1)	

Question	Answer		Marks	Guidance
	OR1: Route 2 $A^{* * * * * * * * *} A \text { in }{ }^{9} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{2}=756 \text { ways }$		(M1	Considering AA and BB options with values
	$B^{* * * * * * * * * B ~ i n ~}{ }^{9} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{5}=126$ ways		A1	Any one option correct
	$756+126$		DM1	Summing their $A A$ and BB outcomes only
	Total $=882$		A1)	
	Total:		4	

Question	Answer	Marks	Guidance
6(ii)	EITHER: (The subtraction method) As together, no restrictions $8!/ 2!5!=168$	(*M1	Considering all As together -8 ! seen alone or as numerator condone $\times 4$! for thinking A's not identical
	$A \mathrm{~s}$ together and $B \mathrm{~s}$ together $7!/ 5!=42$	M1	Considering all As together and all Bs together -7 ! seen alone or numerator
		M1	Removing repeated Bs or Cs - Dividing by 5 ! either expression or 2 ! 1st expression only - OE
	Total 168-42	DM1	Subt their 42 from their 168 (dependent upon first \mathbf{M} being awarded)
	$=126$	A1)	
	OR1: As together, no restrictions ${ }^{8} \mathrm{C}_{5} \mathrm{X}^{3} \mathrm{C}_{1}=168$	(*M1	${ }^{8} \mathrm{C}_{5}$ seen alone or multiplied
		M1	${ }^{7} \mathrm{C}_{5}$ seen alone or multiplied
	A s together and B s together ${ }^{7} \mathrm{C}_{5} \times{ }^{2} \mathrm{C}_{1}=42$	M1	First expression $\mathrm{x}^{3} \mathrm{C}_{1}$ or second expression $\mathrm{x}^{2} \mathrm{C}_{1}$
	Total 168-42	DM1	Subt their 42 from their 168 (dependent upon first \mathbf{M} being awarded)
	$=126$	A1)	
	OR2: (The intersperse method)	(M1	Considering all "As together" with Cs - Mult by 6!
	$(A A A A) C C C C C$ then intersperse B and another B	M1	Removing repeated Cs - Dividing by 5!- [Mult by 6 implies M2]
		*M1	Considering positions for $B s$ - Mult by 7P2 oe -

Question	Answer		Marks	Guidance
	$\frac{6!}{5!} \times 7 \times 6 \div 2$		DM1	Dividing by 2 ! Oe - removing repeated $B \mathrm{~s}$ (dependent upon 3rd M being awarded)
	$=126$		A1)	
		Total:	5	
7(i)	$\mathrm{P}(\mathrm{H})=\mathrm{P}(\mathrm{BH})+\mathrm{P}(\mathrm{SH})=0.6 \times 0.05+0.4 \times 0.75$		M1	Summing two 2 -factor probs using 0.6 with 0.05 or 0.95 , and 0.4 with 0.75 or 0.25
	$=0.330 \text { or } \frac{33}{100}$		A1	Correct final answer accept 0.33
		Total:	2	
7(ii)	$\mathrm{P}(S \mid H)=\frac{P(S \cap H)}{P(H)}=\frac{0.4 \times 0.75}{0.33}=\frac{0.3}{0.33}$		M1 FT	Their $\frac{P(S \cap H)}{P(H)}$ unsimplified, FT from (i)
	$=\frac{10}{11} \text { or } 0.909$		A1	
		Total:	2	
7(iii)	$\begin{aligned} & \operatorname{Var}(B)=45 \times 0.6 \times 0.4 \\ & \operatorname{Var}(S)=45 \times 0.4 \times 0.6 \end{aligned}$		B1	One variance stated unsimplified
	Variances same		B1	Second variance stated unsimplified and at least one variance clearly identified, and both evaluated or showing equal or conclusion made SR B1 - Standard Deviation calculated Fulfil all the criteria for the variance method but calculated to Standard Deviation
		Total:	2	

Question	Answer	Marks	Guidance
7(iv)	$\begin{aligned} & 1-\mathrm{P}(0,1) \\ & =1-\left[(0.6)^{10}+{ }^{10} \mathrm{C}_{1}(0.4)(0.6)^{9}\right]=1-0.0464 \\ & \text { OR } \\ & \mathrm{P}(2,3,4,5,6,7,8,9,10) \\ & ={ }^{10} \mathrm{C}_{2}(0.4)^{2}(0.6)^{8}+\ldots+{ }^{10} \mathrm{C}_{9}(0.4)^{9}(0.6)+(0.4)^{10} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	Bin term ${ }^{10} \mathrm{C}_{x} p^{x}(1-p)^{10-x} 0<p<1$ Correct unsimplified answer
	$=0.954$	A1	
	Total:	3	

