97**May/June 2017**61

Question	Answer	Marks	Guidance
1(i)	EITHER: $\frac{\sum x}{30} - k = \frac{315}{30} = 10.5$	(M1	Dividing 315 by ± 30 and $+$ or $-$ from 50.5 need both and no more
	k = 5.5 - 10.5 = 40	A1)	Correct answer from correct working
	<i>OR:</i> $\sum x = 50.5 \times 30 = 1515$, $1515 - 30k = 315$	(M1	Mult by 50.5 by 30 and $+$ or -315 and dividing by ± 30 need all these
	<i>k</i> =40	A1)	Correct answer from correct working. 1200 gets M0
	Total:	2	
1(ii)	<i>EITHER:</i> var = 4022/30–10.5 ² (=23.817)	(M1	Subst in correct coded variance formula
	sd = 4.88	A1)	
	<i>OR:</i> $\sum_{x} x^{2} - 2(40) \sum_{x} x + 30(40)^{2} = 4022, \sum_{x} x^{2} = 77222$ Var = 77222/30 - 50.5 ² (= 23.817)	(M1	Expanding with $\pm 40\Sigma x$ and $\pm 30(40)^2$ seen
	sd = 4.88	A1)	
	Total:	2	

Question	Answer	Marks	Guidance
2	P(R) = 4/36 = 1/9	M1	Attempt at $P(R)$ by probability space diag or listing more than half the options, must see a prob, just a list is not enough
	P(T) = P(O, E) + P(E, O) = 1/4 + 1/4 = 1/2 OR P(R T) = 1/9	M1	Attempt at $P(T)$ or $P(R T)$ involving more than half the options
	$P(R \cap T) = P(3, 4) + P(4, 3) = 2/36 = 1/18 \text{ OR } P(R T) = 1/9$	B1	Value stated, not from $P(R) \times P(T)$ e.g. from probability space diagram
	As $P(R) \times P(T) = P(R \cap T)$ OR as $P(R T) = P(R)$	M1	Comparing product values with $P(R \cap T)$, or comparing $P(R T)$ with $P(R)$
	The events are independent.	A1	Correct conclusion must have all probs correct
	Total:	5	

9709/61

Question	Answer	Marks	Guidance
3(i)	$W = \frac{7/10}{1/10} \frac{W}{L}$ $W = \frac{1/10}{1/10} \frac{D}{L}$ $\frac{1/3}{1/3} \frac{W}{L}$ $\frac{1/3}{1/3} \frac{D}{L}$ $\frac{1/3}{1/3} \frac{D}{L}$ $\frac{1/20}{13/20} \frac{D}{L}$	M1	Correct shape i.e. 3 branches then 3 by 3 branches, labelled and clear annotation Condone omission of lines for first match result providing the probabilities are there.
		A1	All correct probs with fully correct shape and probs either fractions or decimals not 1.5/5 etc.
	Total:	2	

Question	Answer	Marks	Guidance
3(ii)	$P(L_1 \text{ given } W_2) = \frac{P(L_1 \cap W_2)}{P(W_2)}$	M1	Attempt at $P(L1 \cap W2)$ as a two-factor prod only as num or denom of a fraction
	$=\frac{1/5\times3/10}{3/5\times7/10+1/5\times1/3+1/5\times3/10}$	M1	Attempt at P(W2) as sum of appropriate 3 two-factor probs OE seen anywhere
		A1	Unsimplified correct P(W2) num or denom of a fraction
	$=\frac{3/50}{41/75}=9/82(0.110)$	A1	
	Total:	4	

97**May/June 2017**61

Question	Answer	Marks	Guidance
4(i)	fd 16, 14, 11, 505, 2.5	M1	Attempt at fd (must be at least 3 freq/cw) – may be implied by graph
	fd 20 15 15 10 5 0 20 40 60 80 100 120 140 time sec	A1	Correct heights seen on graph i.e. must see a gap for fd = 2.5 etc.
		B1	Correct end points of bars and correct widths
		B1	labels fd, sec. Time can be optional. Linear axes, condone $0 \le t \le 20$ etc.
	Total:	4	

97**May/June 2017**61

Question	Answer	Marks	Guidance
4(ii)	$(10 \times 320 + 30 \times 280 + 50 \times 220 + 80 \times 220 + 120 \times 100) / 1140$	M1	using $\sum fx / n$ with mid-point attempt ±0.5, not ends not class widths
	= 45.8	A1	
	Total:	2	
5(i)	<i>p</i> = 0.07	B1	
	$P(2) = {}^{20}C_2 (0.07)^2 (0.93)^{18}$	M1	Bin term ${}^{20}C_x p^x (1-p)^{20-x}$ their p
	= 0.252	A1	
	Total:	3	
5(ii)	P(at least 1 cracked egg)= $1-(0.93)^{20}=1-0.2342$	M1	Attempt to find P(at least1 cracked egg) with their p from (i) allow $1 - P(0, 1)$ OE
	= 0.766	A1	Rounding to 0.766
	Total:	2	
5(iii)	$(0.7658)^{n} < 0.01$	M1	Eqn or inequal containing (their 0.766) ⁿ or (their 0.234) ⁿ , together with 0.01 or 0.99
	<i>n</i> = 18	A1	
	Total:	2	

97 May/June 2017 61

Question	Answer	Marks	Guidance
6(a)(i)	z = 0.674	B1	rounding to ± 0.674 or 0.675
	$0.674 = \frac{6.8 - \mu}{0.25\mu}$	M1	standardising, no cc, no sq rt, no sq, σ may still be present on RHS
		M1	subst and sensible solving for μ must collect terms, no <i>z</i> -value needed can be 0.75 or 0.7734 need a value for μ
	$\mu = 5.82$	A1	
	Total:	4	
6(a)(ii)	$P(X < 4.7) = P\left(z < \frac{4.7 - 5.819}{1.4548}\right)$	M1	\pm standardising no cc, no sq rt, no sq unless penalised in (a)(i)
	$= \phi(-0.769) = 1 - 0.7791$	M1	correct side for their mean i.e. $1-\phi$ (final solution)
	= 0.221	A1	
	Total:	3	
6(b)	$P(<15.75) = P\left(z < \frac{15.75 - 16}{0.2}\right) = 1 - P(z < 1.25) = 1 - 0.8944 = 0.1056 \text{ and}$ $P(>16.25) = 0.1056 \text{ by sym}$	*M1	Standardising for 15.75 or 16.25 no cc no sq no sq rt unless penalised in (a)(i) or (a)(ii)
	P(usable) = 1 - 0.2112 = 0.7888	B1	2ϕ -1 OE for required prob, (final solution)
	Usable rods=1000 × 0.7888 =	DM1	Mult their prob by 1000 dep on recognisable attempt to standardise
	788 or 789	A1	
	Total:	4	

97**May/June 2017**61

Question	Answer	Marks	Guidance
7(a)	<i>EITHER:</i> e.g. xxxxx =5! for the other children	(B1	5! OE seen alone or mult by integer $k \ge 1$, no addition
	Put y in 6 ways, then 5 then 4 for the youngest children	B1	Mult by 6P3 OE
	Answer $5! \times 6P3 = 14400$	B1)	Correct answer
	<i>OR</i> : total $-3 \text{ tog} - 2 \text{ tog} = 8! - 6!3! - 6! \times 2 \times 5 \times 3 = 14400$	(B1	$8! - 6! \times k \ge 1$ seen
		B1	6!3! or 6! \times 2 \times 5 \times 3 seen subtracted
		B1)	Correct answer
	Total:	3	
7(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	One correct unsimplified option
	3 1 1 = $6C3 \times 4 \times 1$ = 80	M1	Summing 2 or more 3-factor options which can contain perms or 3 factors added. The 1 can be implied
	1 3 1 = $6 \times 4C3 \times 1$ = 24	M1	Summing the correct 3 unsimplified outcomes only
	Total=194 ways	A1	
	Total:	4	

97May/June 2017 61

Question		Answer								Guidance
7(c)	C 2	D 1	S 1	=	$^{26}C_2 \times 9 \times 5 \times 4!$	=	351 000		M1	summing 2 or more options of the form (2 1 1), (1 2 1), (1 1 2), can have perms, can be added
	1	2	1	=	$26 \times {}^9C_2 \times 5 \times 4!$	=	112 320		M1	4 relevant products seen excluding 4! e.g. $26 \times 9 \times 8 \times 5$ or $26 \times {}^{9}P_{2} \times 5$ for 2nd outcome, condone $26 \times 9 \times 5 \times 37$ as being relevant
	1	1	2	=	$26 \times 9 \times {}^{5}C_{2} \times 4!$	=	56 160		M1	mult all terms by 4! or 4!/2!
	Tota	al = 51	9 480						A1	
								Total:	4	