Question	Answer	Marks	Guidance
1(i)	EITHER: $\frac{\sum x}{30}-k=\frac{315}{30}=10.5$	(M1	Dividing 315 by ± 30 and + or - from 50.5 need both and no more
	$k=5.5-10.5=40$	A1)	Correct answer from correct working
	$\begin{aligned} & \text { OR: } \\ & \sum x=50.5 \times 30=1515,1515-30 k=315 \end{aligned}$	(M1	Mult by 50.5 by 30 and + or -315 and dividing by ± 30 need all these
	$k=40$	A1)	Correct answer from correct working. 1200 gets M0
	Total:	2	
1(ii)	EITHER: $\mathrm{var}=4022 / 30-10.5^{2}(=23.817)$	(M1	Subst in correct coded variance formula
	sd $=4.88$	A1)	
	OR: $\begin{aligned} & \sum x^{2}-2(40) \sum x+30(40)^{2}=4022, \quad \sum x^{2}=77222 \\ & \operatorname{Var}=77222 / 30-50.5^{2}(=23.817) \end{aligned}$	(M1	Expanding with $\pm 40 \Sigma x$ and $\pm 30(40)^{2}$ seen
	$\mathrm{sd}=4.88$	A1)	
	Total:	2	

Question	Answer	Marks	Guidance
2	$\mathrm{P}(R)=4 / 36=1 / 9$	M1	Attempt at $\mathrm{P}(R)$ by probability space diag or listing more than half the options, must see a prob, just a list is not enough
	$\mathrm{P}(T)=\mathrm{P}(\mathrm{O}, \mathrm{E})+\mathrm{P}(\mathrm{E}, \mathrm{O})=1 / 4+1 / 4=1 / 2$ OR $\mathrm{P}(R \mid T)=1 / 9$	M1	Attempt at $\mathrm{P}(T)$ or $\mathrm{P}(R \mid T)$ involving more than half the options
	$\mathrm{P}(R \cap T)=\mathrm{P}(3,4)+\mathrm{P}(4,3)=2 / 36=1 / 18$ OR $\mathrm{P}(R \mid T)=1 / 9$	B1	Value stated, not from $\mathrm{P}(\mathrm{R}) \times \mathrm{P}(\mathrm{T})$ e.g. from probability space diagram
	As $\mathrm{P}(R) \times \mathrm{P}(T)=\mathrm{P}(R \bigcap T)$ OR as $\mathrm{P}(R \mid T)=\mathrm{P}(R)$	M1	Comparing product values with $\mathrm{P}(R \cap T)$, or comparing $\mathrm{P}(R \mid T)$ with $\mathrm{P}(R)$
	The events are independent.	A1	Correct conclusion must have all probs correct
	Total:	5	

Question	Answer	Marks	Guidance
3(i)		M1	Correct shape i.e. 3 branches then 3 by 3 branches, labelled and clear annotation Condone omission of lines for first match result providing the probabilities are there.
		A1	All correct probs with fully correct shape and probs either fractions or decimals not $1.5 / 5$ etc.
	Total:	2	

Question	Answer	Marks	Guidance
3(ii)	$\mathrm{P}\left(L_{1} \text { given } W_{2}\right)=\frac{\mathrm{P}\left(L_{1} \cap W_{2}\right)}{\mathrm{P}\left(W_{2}\right)}$	M1	Attempt at $\mathrm{P}(\mathrm{L} 1 \cap \mathrm{~W} 2)$ as a two-factor prod only as num or denom of a fraction
	$=\frac{1 / 5 \times 3 / 10}{3 / 5 \times 7 / 10+1 / 5 \times 1 / 3+1 / 5 \times 3 / 10}$	M1	Attempt at $\mathrm{P}(\mathrm{W} 2)$ as sum of appropriate 3 two-factor probs OE seen anywhere
		A1	Unsimplified correct $\mathrm{P}(\mathrm{W} 2)$ num or denom of a fraction
	$=\frac{3 / 50}{41 / 75}=9 / 82(0.110)$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
4(ii)	$(10 \times 320+30 \times 280+50 \times 220+80 \times 220+120 \times 100) / 1140$	M1	using $\Sigma f x / n$ with mid-point attempt ± 0.5, not ends not class widths
	$=45.8$	A1	
	Total:	2	
5(i)	$p=0.07$	B1	
	$\mathrm{P}(2)={ }^{20} \mathrm{C}_{2}(0.07)^{2}(0.93)^{18}$	M1	Bin term ${ }^{20} \mathrm{C}_{x} p^{x}(1-p)^{20-x}$ their p
	$=0.252$	A1	
	Total:	3	
5(ii)	$P($ at least 1 cracked egg $)=1-(0.93)^{20}=1-0.2342$	M1	Attempt to find P (at least1 cracked egg) with their p from (i) allow $1-\mathrm{P}(0,1) \mathrm{OE}$
	$=0.766$	A1	Rounding to 0.766
	Total:	2	
5(iii)	$(0.7658)^{\mathrm{n}}<0.01$	M1	Eqn or inequal containing (their 0.766) ${ }^{\mathrm{n}}$ or (their $0.234)^{\mathrm{n}}$, together with 0.01 or 0.99
	$n=18$	A1	
	Total:	2	

Question	Answer	Marks	Guidance
6(a)(i)	$z=0.674$	B1	rounding to ± 0.674 or 0.675
	$0.674=\frac{6.8-\mu}{0.25 \mu}$	M1	standardising, no cc, no sq rt, no sq, σ may still be present on RHS
		M1	subst and sensible solving for μ must collect terms, no z-value needed can be 0.75 or 0.7734 need a value for μ
	$\mu=5.82$	A1	
	Total:	4	
6(a)(ii)	$\mathrm{P}(X<4.7)=\mathrm{P}\left(z<\frac{4.7-5.819}{1.4548}\right)$	M1	\pm standardising no cc, no sq rt, no sq unless penalised in (a)(i)
	$=\phi(-0.769)=1-0.7791$	M1	correct side for their mean i.e. 1- ϕ (final solution)
	$=0.221$	A1	
	Total:	3	
6(b)	$\begin{aligned} & \mathrm{P}(<15.75)=\mathrm{P}\left(z<\frac{15.75-16}{0.2}\right)=1-\mathrm{P}(z<1.25)=1-0.8944=0.1056 \text { and } \\ & \mathrm{P}(>16.25)=0.1056 \text { by sym } \end{aligned}$	*M1	Standardising for 15.75 or 16.25 no cc no sq no sq rt unless penalised in (a)(i) or (a)(ii)
	$\mathrm{P}($ usable $)=1-0.2112=0.7888$	B1	$2 \phi-1$ OE for required prob, (final solution)
	Usable rods $=1000 \times 0.7888=$	DM1	Mult their prob by 1000 dep on recognisable attempt to standardise
	788 or 789	A1	
	Total:	4	

