

Question	Answer	Marks	Notes
1(i)	(4 = 5r) r = 0.8 m	B1	Uses $v = r\omega$
	Total:	1	
1(ii)	$T = 0.2 \times 5^2 \times 0.8$	M1	Uses Newton's Second Law horizontally
	T = 4 N	A1 FT	FT with their radius from part (i)
	$4 = \lambda (0.8 - 0.6) / 0.6$	M1	Uses $T = \lambda x / L$
	$\lambda = 12$	A1	
	Total:	4	
2(i)	$6\cos 60 = 4\cos 60 + mg$	M1	Resolve vertically
	m = 0.1 kg	A1	
	Total:	2	
2(ii)	radius = 0.7sin60	B1	
	$6\sin 60 + 4\sin 60 = 0.1 v^2 / (0.7\sin 60)$	M1	Uses Newton's Second Law horizontally with 3 terms
	$v = 7.25 \text{ m s}^{-1}$	A1	
	Total:	3	
3(i)	Height of C of M of each vertical face above the base $= 0.1$ m	B1	
	$5 \times 3y = 4 \times 3 \times 0.1$	M1	Takes moments about the base. y is the height of the C of M above the base
	y = 0.08 m	A1	
	Total:	3	

Question	Answer	Marks	Notes	
3(ii)	Moment of lid about the base = $3 \times (0.2 + 0.1 \sin \theta)$	B1	θ is the angle the lid makes with the horizontal	
	$(6 \times 3 + 2) \times 0.12 = 5 \times 3 \times 0.08 + 2 \times 0.2 + 3 \times (0.2 + 0.1 \sin\theta)$	M1	Take moments about the base	
		A1		
	$\theta = 41.8^{\circ}$	A1		
	Total:	4		
4(i)	$0.4a = 0.4g - 0.2v^2$	M1	Uses Newton's Second Law vertically	
	$v dv / dx = 10 - 0.5 v^2$	A1	AG	
	Total:	2		
4(ii)	$\int v \mathrm{d}v / \left(10 - 0.5v^2\right) = \int \mathrm{d}x$	M1	Separates the variables and attempts to integrate	
	$-\ln(10 - 0.5v^2) = x(+c)$	A1		
	$x = 0, v = 0$ hence $c = -\ln 10$	M1	Attempts to find c using $x = 0$, $v = 0$	
	$v = \sqrt{(20 - 20e^{-x})}$	A1	$10-0.5 v^2 = e^{-x+\ln 10} = 10 e^{-x}$	
	Total:	4		
4(iii)	Increase= $\sqrt{(20-20e^{-8})} - \sqrt{(20-20e^{-4})}$	M1	M1 if x values are substituted into their value for part (ii)	
	$Increase = 0.0404 \text{ m } s^{-1}$	A1	Allow 0.04	
	Total:	2		

Question	Answer	Marks	Notes
5(i)	0.3g = 6 e / 0.8	M1	Uses $T = \lambda x / L$
	e = 0.4 m	A1	
	$EE = 6 \times 0.4^2 / (2 \times 0.8)$	B1 FT	FT for their e
	$0.3 v^2 / 2 - 0.3 \times 2^2 / 2 = 0.3 g(0.8 + 0.4) - 6 \times 0.4^2 / (2 \times 0.8)$	M1	Sets up a 4 term energy equation involving EE, KE and PE
	$v = 4.9(0) \mathrm{m}\mathrm{s}^{-1}$ or $2\sqrt{6}$	A1	
	Total:	5	
5(ii)	$0.3 \times 2^2 / 2 + 0.3 gL = 6(L - 0.8)^2 / (2 \times 0.8)$	M1	Sets up a 3 term energy equation involving EE, KE and PE
		A1	
	L = 2.18 m	A1	Ignore answers less than 0.8
	Total:	3	
6(i)	$3 \times 0.6 = 8\cos 60 \overline{x}$	M1	Takes moments about A
	$\overline{x} = 0.45 \text{ m}$	A1	
	Total:	2	
6(ii)	$P\cos 60 \times 0.6 = 8 \times 0.45 \cos 60$	M1	Takes moments about A
	P = 6 N	A1	
	Total:	2	

Question	Answer	Marks	Notes
6(iii)	$\mu = 3\cos 30 / (8 - 3\sin 30)$	M1	Uses $F = \mu R$ used
	$\mu = 6\cos 30 / (8 + 6\sin 30)$	M1	
	$\mu = 0.4 \text{ or } 0.472$	A1	
	$\mu = 0.472 \text{ accept } 0.47$	A1	
	Total:	4	
7(i)	$\tan\theta = 2$	B1	Note $\theta = 63.4349^{\circ}$
	Total:	1	

Question	Answer	Marks	Notes
7(ii)	EITHER: $a = 2a - 25 a^2 / V^2 (25a = V^2)$	(B1	Substitutes $x = y = a$ into the trajectory equation
	$a = V \cos 63.4349 \times 4$	B1	Horizontal motion
	$V^2 = 25 \times 4 \times \text{V}\cos 63.4349$	M1	Attempts to eliminate <i>a</i>
	$V = 44.7(213)$ or $20\sqrt{5}$	A1	
	a = 80	A1)	
	$OR: a = V \sin 63.4349 \times 4 - g 4^2 / 2$	(B1	Uses $s = ut + at^2/2$ vertically
	$a = V \cos 63.4349 \times 4$	B1	Horizontal motion
	$V\sin 63.4349 \times 4 - g 4^2 / 2 = V\cos 63.4349 \times 4$	M1	Attempts to solve the 2 equations
	$V = 44.7(213)$ or $20\sqrt{5}$	A1	
	a = 80	A1)	
	Total:	5	
7(iii)	$v_v = 44.7213\sin 63.4349 4g(=0)$	M1	v_v = vertical component of the velocity
	$\alpha = \tan^{-1} + -0 / (44.7213\cos 63.4349)$	M1	$\tan \alpha = v_v / v_h$ where v_h = horizontal velocity
	$\alpha = 0^{\circ}$	A1	
	Total:	3	