Question	Answer	Marks	Notes
1(i)	$(4=5 r) r=0.8 \mathrm{~m}$	B1	Uses $v=r \omega$
	Total:	1	
1(ii)	$T=0.2 \times 5^{2} \times 0.8$	M1	Uses Newton's Second Law horizontally
	$T=4 \mathrm{~N}$	A1 FT	FT with their radius from part (i)
	$4=\lambda(0.8-0.6) / 0.6$	M1	Uses $T=\lambda \times / L$
	$\lambda=12$	A1	
	Total:	4	
2(i)	$6 \cos 60=4 \cos 60+m g$	M1	Resolve vertically
	$m=0.1 \mathrm{~kg}$	A1	
	Total:	2	
2(ii)	radius $=0.7 \sin 60$	B1	
	$6 \sin 60+4 \sin 60=0.1 v^{2} /(0.7 \sin 60)$	M1	Uses Newton's Second Law horizontally with 3 terms
	$v=7.25 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	Total:	3	
3(i)	Height of C of M of each vertical face above the base $=0.1 \mathrm{~m}$	B1	
	$5 \times 3 \mathrm{y}=4 \times 3 \times 0.1$	M1	Takes moments about the base. y is the height of the C of M above the base
	$y=0.08 \mathrm{~m}$	A1	
	Total:	3	

Question	Answer	Marks	Notes
3(ii)	Moment of lid about the base $=$ $3 \times(0.2+0.1 \sin \theta)$	B1	θ is the angle the lid makes with the horizontal
	$(6 \times 3+2) \times 0.12=5 \times 3 \times 0.08+2 \times 0.2+3 \times(0.2+0.1 \sin \theta)$	M1	Take moments about the base
		A1	
	$\theta=41.8^{\circ}$	A1	
	Total:	4	
4(i)	$0.4 a=0.4 g-0.2 v^{2}$	M1	Uses Newton's Second Law vertically
	$v \mathrm{~d} v / \mathrm{d} x=10-0.5 v^{2}$	A1	AG
	Total:	2	
4(ii)	$\int v \mathrm{~d} v /\left(10-0.5 v^{2}\right)=\int \mathrm{d} x$	M1	Separates the variables and attempts to integrate
	$-\ln \left(10-0.5 v^{2}\right)=x(+\mathrm{c})$	A1	
	$x=0, v=0$ hence $\mathrm{c}=-\ln 10$	M1	Attempts to find c using $x=0, v=0$
	$v=\sqrt{\left(20-20 \mathrm{e}^{-x}\right)}$	A1	$10-0.5 v^{2}=\mathrm{e}^{-x+\ln 10}=10 \mathrm{e}^{-x}$
	Total:	4	
4(iii)	Increase $=\sqrt{\left(20-20 \mathrm{e}^{-8}\right.}-\sqrt{\left(20-20 \mathrm{e}^{-4}\right.}$	M1	M1 if x values are substituted into their value for part (ii)
	Increase $=0.0404 \mathrm{~m} \mathrm{~s}^{-1}$	A1	Allow 0.04
	Total:	2	

Question	Answer	Marks	Notes
5(i)	$0.3 g=6 e / 0.8$	M1	Uses $T=\lambda x / L$
	$e=0.4 \mathrm{~m}$	A1	
	$\mathrm{EE}=6 \times 0.4^{2} /(2 \times 0.8)$	B1 FT	FT for their e
	$0.3 v^{2} / 2-0.3 \times 2^{2} / 2=0.3 \mathrm{~g}(0.8+0.4)-6 \times 0.4^{2} /(2 \times 0.8)$	M1	Sets up a 4 term energy equation involving EE, KE and PE
	$v=4.9(0) \mathrm{m} \mathrm{s}^{-1}$ or $2 \sqrt{6}$	A1	
	Total:	5	
5(ii)	$0.3 \times 2^{2} / 2+0.3 g L=6(L-0.8)^{2} /(2 \times 0.8)$	M1	Sets up a 3 term energy equation involving EE, KE and PE
		A1	
	$L=2.18 \mathrm{~m}$	A1	Ignore answers less than 0.8
	Total:	3	
6(i)	$3 \times 0.6=8 \cos 60 \bar{x}$	M1	Takes moments about A
	$\bar{x}=0.45 \mathrm{~m}$	A1	
	Total:	2	
6(ii)	$P \cos 60 \times 0.6=8 \times 0.45 \cos 60$	M1	Takes moments about A
	$P=6 \mathrm{~N}$	A1	
	Total:	2	

Question	Answer	Marks	Notes
6(iii)	$\mu=3 \cos 30 /(8-3 \sin 30)$	M1	Uses $F=\mu R$ used
	$\mu=6 \cos 30 /(8+6 \sin 30)$	M1	
	$\mu=0.4$ or 0.472	A1	
	$\mu=0.472$ accept 0.47	A1	
	Total:	4	
7(i)	$\tan \theta=2$	B1	Note $\theta=63.4349 . .{ }^{\circ}$
	Total:	1	

Question	Answer	Marks	Notes
7(ii)	EITHER: $a=2 a-25 a^{2} / V^{2}\left(25 a=V^{2}\right)$	(B1	Substitutes $x=y=a$ into the trajectory equation
	$a=V \cos 63.4349 . . \times 4$	B1	Horizontal motion
	$V^{2}=25 \times 4 \times \mathrm{V} \cos 63.4349 .$.	M1	Attempts to eliminate a
	$V=44.7(213 .$.$) or 20 \sqrt{5}$	A1	
	$a=80$	A1)	
	OR: $a=V \sin 63.4349 . . \times 4-g 4^{2} / 2$	(B1	Uses $s=u t+a t^{2} / 2$ vertically
	$a=V \cos 63.4349 . . \times 4$	B1	Horizontal motion
	$V \sin 63.4349 . . \times 4-g 4^{2} / 2=V \cos 63.4349 . . \times 4$	M1	Attempts to solve the 2 equations
	$V=44.7(213 .$.$) or 20 \sqrt{5}$	A1	
	$a=80$	A1)	
	Total:	5	
7(iii)	$\nu_{v}=44.7213 . . \sin 63.4349 . .-4 g(=0)$	M1	$\nu_{v}=$ vertical component of the velocity
	$\alpha=\tan ^{-1}+/-0 /(44.7213 . . \cos 63.4349 .$.	M1	$\tan \alpha=v_{v} / v_{h}$ where $v_{h}=$ horizontal velocity
	$\alpha=0^{\circ}$	A1	
	Total:	3	

