Question	Answer	Marks	Guidance
1	$\tan 40=v / 20 \cos 60$	M1	
	$v=10 \tan 40(=8.3909 \ldots)$	A1	
	$-10 \tan 40=20 \sin 60-g t$	M1	Uses $v=u+a t$ vertically
	$t=1.27 \mathrm{~s}$	A1	
	Total:	4	
2(i)	$7=0.35 \lambda / 0.25$	M1	Uses $T=\lambda x / L$
	$\lambda=5$	A1	
	Total:	2	
2(ii)	$\mathrm{EE}=0.35^{2} \times 5 /(2 \times 0.25)$ or $0.05^{2} \times 5 /(2 \times 0.05)$	B1	Uses $\mathrm{EE}=\lambda x^{2} / 2 \mathrm{~L}$
	$\mathrm{PE}=\mathrm{mg} \times 0.3 \sin 30$	B1	
	$\mathrm{mg} \times 0.3 \sin 30=0.35^{2} \times 5 /(2 \times 0.25)-0.05^{2} \times 5 /(2 \times 0.25)$	M1	Sets up a 3 term energy equation involving EE, KE and PE
	$\mathrm{m}=0.8$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
3(i)	CofM of hemisphere $=\frac{3}{8} \times 0.56$ or $\frac{3}{8} \times 0.28$	B1	
	$\begin{aligned} & {\left[\frac{2}{3} \pi \times 0.56^{3}-\frac{2}{3} \pi \times 0.28^{3}\right] X=\frac{2}{3} \pi \times 0.56^{3} \times \frac{3}{8} \times 0.56-\frac{2}{3} \pi \times 0.28^{3} \times} \\ & \frac{3}{8} \times 0.28 \end{aligned}$	M1A1	Take moments about O
	$X=0.225 \mathrm{~m}$	A1	
	Total:	4	
3(ii)	$24 \times 0.225+W(3 \times 0.28 / 8)=(24+W) \times 0.15$	M1A1	Attempts to take moments about O W = weight of uniform hemi-sphere
	$W=40 \mathrm{~N}$	A1	
	Total:	3	
4(i)	$x=10 t$ or $y=g t^{2} / 2$	B1	
	$\mathrm{y}=15 \mathrm{x} / 10-g(x / 10)^{2} / 2$	M1A1	Attempts to eliminate t
	$y=1.5 x-0.05 x^{2}$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
4(ii)	$0=1.5 x-0.05 x^{2}$	M1	Substitute $y=0$ into the trajectory equation
	$x=30$	A1	
	Total:	2	
4(iii)	$-14=1.5 x-0.05 x^{2}$	M1	Sets up a quadratic equation and attempts to solve it
	$x=37.5$	A1	
	Total:	2	
5(i)	$\mathrm{OG}=2 \times 0.7 \sin (\pi / 2) /(3 \pi / 2)(=0.297)$	B1	
	$0.9 R=14(0.7 \cos 30-0.297 \sin 30)$	M1A1	Attempts to take moments about A
	$R=7.12 \mathrm{~N}$	A1	
	Total:	4	
5(ii)	$\mathrm{H}=7.12 \sin 30$ and $\mathrm{V}=14-R \cos 30$	M1	Resolves horizontally and vertically
	$\tan \theta=(14-7.12 \cos 30) /(7.12 \sin 30)$	M1	Uses $\tan \theta=\mathrm{V} / \mathrm{H}$, where θ is the required angle
	$\theta=65.6$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
6 (i)	$T=12 \times 0.1 / 0.4(=3 \mathrm{~N})$	B1	Uses $T=\lambda \times / L$
	$3 \sin \theta=0.15 \omega^{2}(0.5 \sin \theta)$	M1	Uses Newton's Second Law horizontally
	$\omega=6.32 \mathrm{rad} \mathrm{s}^{-1}$	A1	
	$T \cos \theta=0.15 \mathrm{~g}(\cos \theta=0.5)$	M1	Resolves vertically
	$\theta=60$	A1	
	Total:	5	
6(ii)	$v=6.32 \times 0.5 \sin 60$	B1 FT	Uses $v=r \omega$ and $\mathrm{r}=0.5 \sin 60$
	$\mathrm{KE}=0.15(6.32 \times 0.5 \sin 60)^{2} / 2(=0.5625 \mathrm{~J})$	B1	
	Difference $=0.5625-12 \times 0.1^{2} /(2 \times 0.4)$	M1	Uses $\mathrm{EE}=\lambda x^{2} /(2 \mathrm{~L})$
	Difference $=0.4125 \mathrm{~J}$	A1	
	Total:	4	
7(i)	$\mu=0.6 \times 0.5^{2} /(0.5 g)(=0.03)$	B1	Uses $F=\mu R$
	$0.5 \mathrm{~d} v / \mathrm{d} t=0.6 t^{2}-0.03 \times 0.5 \mathrm{~g}$	M1	Uses Newton's Second Law horizontally
	$\mathrm{d} \nu / \mathrm{d} t=1.2 t^{2}-0.3$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
7(ii)	$\begin{aligned} & \int \mathrm{d} v=\int\left(1.2 t^{2}-0.3\right) \mathrm{d} t \\ & v=0.4 t^{3}-0.3 t(+\mathrm{c}) \end{aligned}$	M1	Separates the variables and attempts to integrate
	$t=0.5, v=0$ hence $\mathrm{c}=0.1$	M1	Attempts to find c
	$v=0.4 t^{3}-0.3 t+0.1$	A1	
	Total:	3	
7(iii)	$\begin{aligned} & \int \mathrm{d} x=\int\left(0.4 t^{3}-0.3 \mathrm{t}+0.1\right) \mathrm{d} t \\ & x=0.1 t^{4}-0.15 t^{2}+0.1 t(+\mathrm{c}) \end{aligned}$	M1	Attempts to integrate
	$t=0.5, x=0$ hence $\mathrm{c}=-0.01875$	M1	Finds c or substitutes the limits
	$x(1.2)=0.0926(1)$	A1	
	Total:	3	

