Cambridge International AS/A Level – Mark Scheme PUBLISHED May/June 2017

Question	Answer	Marks	Guidance
1(i)	$WD = 35 \cos 20 \times 12$	M1	Uses WD = $Fd \cos \theta$
	395 J	A1	
	Total:	2	
1(ii)	EITHER:		
	WD against resistance = 15×12	(B1	
	$35\cos 20 \times 12 = 15 \times 12 + \frac{1}{2} (25v^2)$	M1	Uses $WD_{man} = WD_{resistance} + KE$ gain
	$v = 4.14 \text{ ms}^{-1}$	A1)	
	$OR: 35 \cos 20 - 15 = 25 a \qquad [a = 0.716]$	(B1	Applies Newton's Second Law
	$v^2 = 2 \times 0.7155. \times 12$	M1	Uses $v^2 = u^2 + 2as$
	$v = 4.14 \text{ ms}^{-1}$	A1)	
	Total:	3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED May/June 2017

Question	Answer	Marks	Guidance
2	EITHER: $3P \sin 55 + P \sin \theta = 20 + P \sin \theta$ or $3P \sin 55 = 20$	(M1	Resolves forces vertically
	P = 8.14	A1	
	$3P\cos 55 = 2P\cos \theta$	M1	Resolves forces horizontally
	$\cos \theta = 1.5 \cos 55 \longrightarrow \theta = \dots$	M1	Attempt to solve for θ
	$\theta = 30.6$	A1)	
	$\frac{OR:}{\frac{3P}{\sin 90}} = \frac{20}{\sin 125}$	(M1	Uses Lami's Theorem (forces 3 <i>P</i> and 20)
	<i>P</i> = 8.14	A1	
	$\frac{3P}{\sin 90} = \frac{2P\cos\theta}{\sin 145}$	M1	Uses Lami's Theorem (forces $3P$ and $2P \cos \theta$)
	$\cos \theta = 1.5 \sin 145 \rightarrow \theta = \dots$	M1	Attempt to solve for θ
	$\theta = 30.6$	A1)	
	Total:	5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED** May/June 2017

Question	Answer	Marks	Guidance
3(i)	Trapezium, right-hand steeper than left-hand slope	B1	
	Total:	1	
3(ii)	Deceleration 0.5 T	B1	May be implied
	Constant speed $180 - 1.5 T$	B1	
	Total:	2	
3(iii)	$0.5[180 + (180 - 1.5T)] \times 25 = 3300$	M1	Uses area property
	T = 64	A1	
	Distance decelerating = $[0.5 \times 32 \times 25 =]400 \text{ m}$	B1	
	Total:	3	
4(i)	$a = 3 \times 2 \times (2t - 5)^2 [= 54]$	*M1	Uses $a = dv/dt$
	$6(2t-5)^2 = 54 \longrightarrow t = \dots$	DM1	Solves for <i>t</i>
	t = 1, 4	A1	
	Total:	3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED** May/June 2017

Question	Answer	Marks	Guidance
4(ii)	$s = \frac{(2t-5)^4}{4 \times 2}$ (+ C)	*M1	Uses $s = \int v \mathrm{d}t$
	$C = -\frac{625}{8}$	DM1	Uses $s = 0$ at $t = 0$
	$s = \frac{(2t-5)^4}{8} - \frac{625}{8}$	A1	
	Total:	3	
	Alternative method for Que	stion 4	
4(i)	$v = 8t^{3} - 60t^{2} + 150t - 125$ $\rightarrow a = 24t^{2} - 120t + 150$	*M1	Uses $a = dv/dt$
	$24t^2 - 120t + 150 = 54 \to t = \dots$	DM1	Solves for <i>t</i>
	t = 1, 4	A1	
	Total:	3	
4(ii)	$s = \int 8t^{3} - 60t^{2} + 150t - 125 dt$ $\rightarrow s = \frac{8}{4}t^{4} - \frac{60}{3}t^{3} + \frac{150}{2}t^{2} - 125t (+C)$	*M1	Uses $s = \int v \mathrm{d}t$
	<i>C</i> = 0	DM1	Uses $s = 0$ at $t = 0$ (may be implied)
	$s = 2t^4 - 20t^3 + 75t^2 - 125t$	A1	
	Total:	3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED May/June 2017

Question	Answer	Marks	Guidance
5(i)	$s_2 = 20t - 0.5gt^2$	B1	Second particle
		M1	Uses $s = ut + \frac{1}{2} at^2$ for first particle
	$s_1 = 12(t+2) - 0.5g(t+2)^2$	*A1	
	$12(t+2) - 0.5g(t+2)^2 = 20t - 0.5gt^2$ $\rightarrow t =$	DM1	Solves $s_1 = s_2$
	$t = \frac{1}{7} = 0.143$	A1	
	Total:	5	
5(ii)	$[s = 20 \times \frac{1}{7} - 5 \times (\frac{1}{7})^2 = 2.755]$	B1	
	Height is 2.76 m		
	Total:	1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED** May/June 2017

Question	Answer	Marks	Guidance
6(i)(a)	$16000 = F \times 40$	M1	Using $P = Fv$
	Resistance is 400 N	A1	
	Total:	2	
6(i)(b)	$22\ 500 = F \times 45$ F = 500	B1	
	500 - 400 = 1200a	M1	Applying Newton's Second Law
	$a = \frac{1}{12} = 0.0833 (\mathrm{ms}^{-2})$	A1	
	Total:	3	
6(ii)	$16\ 000 = (590 + 2v)v$	M1	Using $P = Fv$
	$[2v^2 + 590 v - 16000 = 0] \to v = \dots$	M1	Solving for <i>v</i>
	$v = 25 \text{ (ms}^{-1})$	A1	
	Total:	3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED** May/June 2017

9709 s17 ms 43

Question	Answer	Marks	Guidance
7(i)	$R = mg \cos 30$	B1	Resolves normally
	$F = 2m\cos 30 \ [= m\sqrt{3}]$	M1	Uses $F = \mu R$
	T = 4g [= 40]	B1	Particle <i>B</i>
	$T = mg\sin 30 + F$	M1	Resolves parallel to plane for particle A
	$40 = 5m + m\sqrt{3}$	A1	Equation in <i>m</i>
	$m = \frac{40}{5 + \sqrt{3}} = 5.94$	A1	AG All correct and no errors seen
	Total:	6	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2017

Question	Answer	Marks	Guidance
7(ii)	<i>EITHER:</i> [$R = 3g \cos 30$] $F = 0.2 \times 3g \cos 30 (3\sqrt{3} = 5.196)$	(B1	
	4g - T = 4a or $T - 3g\sin 30 - F = 3a$ or $4g - 3g\sin 30 - F = 7a$	M1	Applies Newton's Second Law to one of the particles or forms system equation in a $(m_Bg - m_Agsin30 - F = (m_A + m_B)a)$
	$T - 3g\sin 30 - 3\sqrt{3} = 3a$ or $40 - T = 4a$ or $4g - 3g\sin 30 - 3\sqrt{3} = 7a \rightarrow a =$	M1	Applies Newton's Second Law to form second equation in T and a and solves for a or solves system equation for a
	$a = \frac{25 - 3\sqrt{3}}{7} = 2.83.$	A1	
	$v^2 = 2 \times 2.83 \times 0.5$ v = 1.68	B1 FT	<i>v</i> as <i>T</i> becomes zero FT on <i>a</i>
	$-3g\sin 30 - 0.2(3g\cos 30) = 3a$ -15 - 3\sqrt{3} = 3a $\rightarrow a =(-5 - \sqrt{3}) = -6.73$	M1	Applies Newton's Second Law and solves for <i>a</i>
	$0 = 1.68^2 - 2 \times 6.73s$ s =(0.210)	M1	Uses $v^2 = u^2 + 2as$ and solves for <i>s</i>
	Total distance = 0.710 m	A1)	
	<i>OR:</i> $[R = 3g \cos 30]$ $F = 0.2 \times 3g \cos 30$ (3 $\sqrt{3} = 5.196$)	(B1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2017

Question	Answer	Marks	Guidance
		M1	For 4kg mass, uses PE loss – $WD_T = KE$ gain
		M1	For 3kg mass, uses WD _T = KE gain + PE gain + WD _{Fr}
	$4g(0.5) - 0.5T = \frac{1}{2} (4v^2) \text{ and} 0.5T = \frac{1}{2} (3v^2) + 3g(0.5\sin 30) + 3\sqrt{3}(0.5)$	A1	
	$v^2 = (25 - 3\sqrt{3})/7$ or $v = 1.68$	B1	
	$\frac{1}{2}(3)(1.68)^2 = 3g(s\sin 30) + 3\sqrt{3}s$	M1	For 3kg mass, uses KE loss = PE gain + WD_{Fr}
	$s = \dots (0.210)$	M1	Solves for <i>s</i>
	Total distance = 0.710 m	A1)	
	Total:	8	