Question	Answer		Marks	Guidance
1(i)	$\mathrm{WD}=35 \cos 20 \times 12$		M1	Uses $\mathrm{WD}=F d \cos \theta$
	395 J		A1	
		Total:	2	
1(ii)	EITHER: WD against resistance $=15 \times 12$		(B1	
	$35 \cos 20 \times 12=15 \times 12+1 / 2\left(25 v^{2}\right)$		M1	Uses $\mathrm{WD}_{\text {man }}=\mathrm{WD}_{\text {resistance }}+\mathrm{KE}$ gain
	$v=4.14 \mathrm{~ms}^{-1}$		A1)	
	OR: $35 \cos 20-15=25 a \quad[a=0.716]$		(B1	Applies Newton's Second Law
	$v^{2}=2 \times 0.7155 . \times 12$		M1	Uses $v^{2}=u^{2}+2 a s$
	$v=4.14 \mathrm{~ms}^{-1}$		A1)	
		Total:	3	

Question	Answer		Marks	Guidance
2	EITHER: $3 P \sin 55+P \sin \theta=20+P \sin \theta$ $\text { or } 3 P \sin 55=20$		(M1	Resolves forces vertically
	$P=8.14$		A1	
	$3 P \cos 55=2 P \cos \theta$		M1	Resolves forces horizontally
	$\cos \theta=1.5 \cos 55 \rightarrow \theta=\ldots$		M1	Attempt to solve for θ
	$\theta=30.6$		A1)	
	OR: $\frac{3 P}{\sin 90}=\frac{20}{\sin 125}$		(M1	Uses Lami's Theorem (forces $3 P$ and 20)
	$P=8.14$		A1	
	$\frac{3 P}{\sin 90}=\frac{2 P \cos \theta}{\sin 145}$		M1	Uses Lami's Theorem (forces $3 P$ and $2 P \cos \theta$)
	$\cos \theta=1.5 \sin 145 \rightarrow \theta=\ldots$		M1	Attempt to solve for θ
	$\theta=30.6$		A1)	
		Total:	5	

Question	Answer	Marks	Guidance
3(i)	Trapezium, right-hand steeper than left-hand slope	B1	
	Total:	1	
3(ii)	Deceleration $0.5 T$	B1	May be implied
	Constant speed 180-1.5T	B1	
	Total:	2	
3(iii)	$0.5[180+(180-1.5 T)] \times 25=3300$	M1	Uses area property
	$T=64$	A1	
	Distance decelerating $=[0.5 \times 32 \times 25=] 400 \mathrm{~m}$	B1	
	Total:	3	
4(i)	$a=3 \times 2 \times(2 t-5)^{2}[=54]$	*M1	Uses $a=\mathrm{d} v / \mathrm{d} t$
	$6(2 t-5)^{2}=54 \rightarrow t=\ldots$	DM1	Solves for t
	$t=1,4$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
4(ii)	$\left.s={\frac{(2 t-5)^{4}}{4 \times 2}}^{4}+C\right)$	*M1	Uses $s=\int v \mathrm{~d} t$
	$C=-\frac{625}{8}$	DM1	Uses $s=0$ at $t=0$
	$s=\frac{(2 t-5)^{4}}{8}-\frac{625}{8}$	A1	
	Total:	3	
	Alternative method for Question 4		
4(i)	$\begin{aligned} & v=8 t^{3}-60 t^{2}+150 t-125 \\ & \rightarrow a=24 t^{2}-120 t+150 \end{aligned}$	*M1	Uses $a=\mathrm{d} v / \mathrm{d} t$
	$24 t^{2}-120 t+150=54 \rightarrow t=\ldots$	DM1	Solves for t
	$t=1,4$	A1	
	Total:	3	
4(ii)	$\begin{aligned} & s=\int 8 t^{3}-60 t^{2}+150 t-125 \mathrm{~d} t \\ & \rightarrow s=\frac{8}{4} t^{4}-\frac{60}{3} t^{3}+\frac{150}{2} t^{2}-125 t(+C) \end{aligned}$	*M1	Uses $s=\int v \mathrm{~d} t$
	$C=0$	DM1	Uses $s=0$ at $t=0$ (may be implied)
	$s=2 t^{4}-20 t^{3}+75 t^{2}-125 t$	A1	
	Total:	3	

Question	Answer		Marks	Guidance
5(i)	$s_{2}=20 t-0.5 g t^{2}$		B1	Second particle
			M1	Uses $s=u t+1 / 2 a t^{2}$ for first particle
	$s_{1}=12(t+2)-0.5 g(t+2)^{2}$		*A1	
	$\begin{aligned} & 12(t+2)-0.5 g(t+2)^{2}=20 t-0.5 g t^{2} \\ & \rightarrow \mathrm{t}=\ldots \end{aligned}$		DM1	Solves $\mathrm{s}_{1}=\mathrm{s}_{2}$
	$t=\frac{1}{7}=0.143$		A1	
		Total:	5	
5(ii)	$\left[s=20 \times \frac{1}{7}-5 \times\left(\frac{1}{7}\right)^{2}=2.755 \ldots\right]$ Height is 2.76 m		B1	
		Total:	1	

Question	Answer		Marks	Guidance
6(i)(a)	$16000=F \times 40$		M1	Using $P=F v$
	Resistance is 400 N		A1	
		Total:	2	
6(i)(b)	$\begin{aligned} & 22500=F \times 45 \\ & F=500 \end{aligned}$		B1	
	$500-400=1200 a$		M1	Applying Newton's Second Law
	$a=\frac{1}{12}=0.0833\left(\mathrm{~ms}^{-2}\right)$		A1	
		Total:	3	
6(ii)	$16000=(590+2 v) v$		M1	Using $P=F v$
	$\left[2 v^{2}+590 v-16000=0\right] \rightarrow v=\ldots$		M1	Solving for v
	$v=25\left(\mathrm{~ms}^{-1}\right)$		A1	
		Total:	3	

Question	Answer		Marks	Guidance
7(i)	$R=m g \cos 30$		B1	Resolves normally
	$F=2 m \cos 30[=m \sqrt{ } 3]$		M1	Uses $F=\mu R$
	$T=4 g[=40]$		B1	Particle B
	$T=m g \sin 30+F$		M1	Resolves parallel to plane for particle A
	$40=5 m+m \sqrt{ } 3$		A1	Equation in m
	$m=\frac{40}{5+\sqrt{3}}=5.94$		A1	AG All correct and no errors seen
		Total:	6	

Question	Answer	Marks	Guidance
7(ii)	EITHER: $\begin{aligned} & {[R=3 g \cos 30]} \\ & F=0.2 \times 3 g \cos 30(3 \sqrt{ } 3=5.196) \end{aligned}$	(B1	
	$\begin{aligned} & 4 g-T=4 a \\ & \text { or } \quad T-3 g \sin 30-F=3 a \\ & \text { or } \quad 4 g-3 g \sin 30-F=7 a \end{aligned}$	M1	Applies Newton's Second Law to one of the particles or forms system equation in a $\left(m_{\mathrm{B}} g-m_{\mathrm{A}} g \sin 30-F=\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right) a\right)$
	$\begin{aligned} & T-3 g \sin 30-3 \sqrt{ } 3=3 a \\ & \text { or } \quad 40-T=4 a \\ & \text { or } \quad 4 g-3 g \sin 30-3 \sqrt{ } 3=7 a \rightarrow a=\ldots \end{aligned}$	M1	Applies Newton's Second Law to form second equation in T and a and solves for a or solves system equation for a
	$\begin{aligned} a & =\frac{25-3 \sqrt{ } 3}{7} \\ & =2.83 . \end{aligned}$	A1	
	$\begin{aligned} & v^{2}=2 \times 2.83 \times 0.5 \\ & v=1.68 \ldots \end{aligned}$	B1 FT	v as T becomes zero FT on a
	$\begin{aligned} & -3 g \sin 30-0.2(3 g \cos 30)=3 a \\ & -15-3 \sqrt{ } 3=3 a \\ & \rightarrow a=\ldots(-5-\sqrt{ } 3=-6.73) \end{aligned}$	M1	Applies Newton's Second Law and solves for a
	$\begin{aligned} & 0=1.68^{2}-2 \times 6.73 s \\ & s=\ldots(0.210) \end{aligned}$	M1	Uses $v^{2}=u^{2}+2 a s$ and solves for s
	Total distance $=0.710 \mathrm{~m}$	A1)	
	OR: $\begin{aligned} & {[R=3 g \cos 30]} \\ & F=0.2 \times 3 g \cos 30 \quad(3 \sqrt{ } 3=5.196) \end{aligned}$	(B1	

Question	Answer		Marks	Guidance
			M1	For 4kg mass, uses PE loss $-\mathrm{WD}_{T}=\mathrm{KE}$ gain
			M1	For 3 kg mass, uses $\mathrm{WD}_{T}=\mathrm{KE}$ gain +PE gain $+\mathrm{WD}_{F r}$
	$\begin{aligned} & 4 g(0.5)-0.5 T=1 / 2\left(4 v^{2}\right) \text { and } \\ & 0.5 T=1 / 2\left(3 v^{2}\right)+3 g(0.5 \sin 30)+3 \sqrt{ } 3(0.5) \end{aligned}$		A1	
	$v^{2}=(25-3 \sqrt{ } 3) / 7$ or $v=1.68$		B1	
	$1 / 2(3)(1.68)^{2}=3 g(s \sin 30)+3 \sqrt{ } 3 s$		M1	For 3 kg mass, uses KE loss $=\mathrm{PE}$ gain $+\mathrm{WD}_{F r}$
	$s=\ldots(0.210)$		M1	Solves for s
	Total distance $=0.710 \mathrm{~m}$		A1)	
		Total:	8	

