9709/33

Question	Answer	Marks
1	Express the LHS in terms of either cos x and sin x or in terms of tan x	B1
	Use Pythagoras	M1
	Obtain the given answer	A1
	Total:	3
2	<i>EITHER:</i> State a correct unsimplified version of the <i>x</i> or x^2 term in the expansion of $(1+\frac{2}{3}x)^{-3}$ or $(3+2x)^{-3}$ [Symbolic binomial coefficients, e.g. $\begin{pmatrix} -3\\ 2 \end{pmatrix}$, are not sufficient for M1 .]	(M1
	State correct first term $\frac{1}{27}$	B1
	Obtain term $-\frac{2}{27}x$	A1
	Obtain term $\frac{8}{81}x^2$	A1)
	<i>OR:</i> Differentiate expression and evaluate $f(0)$ and $f'(0)$, where $f'(x) = k(3+2x)^{-4}$	(M1
	State correct first term $\frac{1}{27}$	B1
	Obtain term $-\frac{2}{27}x$	A1
	Obtain term $\frac{8}{81}x^2$	A1)
	Total:	4
3	Rearrange as $3u^2 + 4u - 4 = 0$, or $3e^{2x} + 4e^x - 4 = 0$, or equivalent	B1
	Solve a 3-term quadratic for e^x or for u	M1
	Obtain $e^x = \frac{2}{3}$ or $u = \frac{2}{3}$	A1
	Obtain answer $x = -0.405$ and no other	A1
	Total:	4

Question	Answer	Marks
4	Integrate by parts and reach $a\theta \cos \frac{1}{2}\theta + b \int \cos \frac{1}{2}\theta d\theta$	*M1
	Complete integration and obtain indefinite integral $-2\theta \cos \frac{1}{2}\theta + 4\sin \frac{1}{2}\theta$	A1
	Substitute limits correctly, having integrated twice	DM1
	Obtain final answer $(4-\pi)/\sqrt{2}$, or exact equivalent	A1
	Total:	4
5(i)	Use the chain rule	M1
	Obtain correct derivative in any form	A1
	Use correct trigonometry to express derivative in terms of tan x	M1
	Obtain $\frac{dy}{dx} = -\frac{4\tan x}{4 + \tan^2 x}$, or equivalent	A1
	Total:	4
5(ii)	Equate derivative to -1 and solve a 3-term quadratic for tan x	M1
	Obtain answer $x=1.11$ and no other in the given interval	A1
	Total:	2
6(i)	Calculate the value of a relevant expression or expressions at $x = 2.5$ and at another relevant value, e.g. $x = 3$	M1
	Complete the argument correctly with correct calculated values	A1
	Total:	2
6(ii)	State a suitable equation, e.g. $x = \pi + \tan^{-1}(1/(1-x))$ without suffices	B1
	Rearrange this as $\cot x = 1 - x$, or commence working vice versa	B1
	Total:	2
6(iii)	Use the iterative formula correctly at least once	M1
	Obtain final answer 2.576 only	A1
	Show sufficient iterations to 5 d.p. to justify 2.576 to 3 d.p., or show there is a sign change in the interval (2.5755, 2.5765)	A1
	Total:	3

Question	Answer	Marks
7(i)	Use correct quotient rule or product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and solve for x	M1
	Obtain $x = 2$	A1
	Total:	4
7(ii)	State or imply ordinates 1.6487, 1.3591, 1.4938	B1
	Use correct formula, or equivalent, with $h = 1$ and three ordinates	M1
	Obtain answer 2.93 only	A1
	Total:	3
7(iii)	Explain why the estimate would be less than E	B1
	Total:	1
8(i)	Justify the given differential equation	B1
	Total:	1
8(ii)	Separate variables correctly and attempt to integrate one side	B1
	Obtain term kt, or equivalent	B1
	Obtain term $-\ln(50-x)$, or equivalent	B1
	Evaluate a constant, or use limits $x = 0$, $t = 0$ in a solution containing terms $a \ln(50-x)$ and bt	M1*
	Obtain solution $-\ln(50-x) = kt - \ln 50$, or equivalent	A1
	Use $x = 25$, $t = 10$ to determine k	DM1
	Obtain correct solution in any form, e.g. $\ln 50 - \ln (50 - x) = \frac{1}{10} (\ln 2)t$	A1
	Obtain answer $x = 50(1 - \exp(-0.0693t))$, or equivalent	A1
	Total:	8

Question	Answer	Marks
9(i)	State or imply the form $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{3x+2}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 3$, $B = -2$, $C = -6$	A1
	Obtain a second value	A1
	Obtain the third value [Mark the form $\frac{Ax+B}{x^2} + \frac{C}{3x+2}$ using same pattern of marks.]	A1
	Total:	5
9(ii)	Integrate and obtain terms $3 \ln x = \frac{2}{x} - 2 \ln (3x + 2)$ [The FT is on <i>A</i> , <i>B</i> and <i>C</i>] Note: Candidates who integrate the partial fraction $\frac{3x-2}{x^2}$ by parts should obtain $3 \ln x + \frac{2}{x} - 3$ or equivalent	B3 FT
	Use limits correctly, having integrated all the partial fractions, in a solution containing terms $a \ln x + \frac{b}{x} + c \ln (3x + 2)$	M1
	Obtain the given answer following full and exact working	A1
	Total:	5
10(i)	Carry out a correct method for finding a vector equation for <i>AB</i>	M1
	Obtain $\mathbf{r} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - \mathbf{k})$, or equivalent	A1
	Equate two pairs of components of general points on <i>AB</i> and <i>l</i> and solve for λ or for μ	M1
	Obtain correct answer for λ or μ , e.g. $\lambda = \frac{5}{7}$ or $\mu = \frac{3}{7}$	A1
	Obtain $m = 3$	A1
	Total:	5

Question	Answer	Marks
10(ii)	<i>EITHER:</i> Use scalar product to obtain an equation in a, b and c, e.g. $a - 2b - 4c = 0$	(B1
	Form a second relevant equation, e.g. $2a + 3b - c = 0$ and solve for one ratio, e.g. $a : b$	M1
	Obtain final answer $a: b: c = 14: -7:7$	A1
	Use coordinates of a relevant point and values of a , b and c and find d	M1
	Obtain answer $14x - 7y + 7z = 42$, or equivalent	A1)
	OR 1: Attempt to calculate the vector product of relevant vectors, e.g. $(i-2j-4k) \times (2i+3j-k)$	(M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $14\mathbf{i} - 7\mathbf{j} + 7\mathbf{k}$	A1
	Substitute coordinates of a relevant point in $14x - 7y + 7z = d$, or equivalent, and find <i>d</i>	M1
	Obtain answer $14x - 7y + 7z = 42$, or equivalent	A1)
	<i>OR 2:</i> Using a relevant point and relevant vectors, form a 2–parameter equation for the plane	(M1
	State a correct equation, e.g. $\mathbf{r} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k} + s(\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) + t(2\mathbf{i} + 3\mathbf{j} - \mathbf{k})$	A1
	State 3 correct equations in x , y , z , s and t	A1
	Eliminate <i>s</i> and <i>t</i>	M1
	Obtain answer $2x - y + z = 6$, or equivalent	A1)
	<i>OR 3:</i> Using a relevant point and relevant vectors, form a determinant equation for the plane	(M1
	State a correct equation, e.g. $\begin{vmatrix} x-1 & y+2 & z-1 \\ 1 & -2 & -4 \\ 2 & 3 & -1 \end{vmatrix} = 0$	A1
	Attempt to expand the determinant	M1
	Obtain or imply two correct cofactors	A1
	Obtain answer $14x - 7y + 7z = 42$, or equivalent	A1)
	Total:	5

9709/33

Question	Answer	Marks
11(a)	Solve for <i>z</i> or for <i>w</i>	M1
	Use $i^2 = -1$	M1
	Obtain $w = \frac{i}{2-i}$ or $z = \frac{2+i}{2-i}$	A1
	Multiply numerator and denominator by the conjugate of the denominator	M1
	$Obtain \ w = -\frac{1}{5} + \frac{2}{5}i$	A1
	Obtain $z = \frac{3}{5} + \frac{4}{5}i$	A1
	Total:	6
11(b)	EITHER: Find $\pm \left[2 + \left(2 - 2\sqrt{3}\right)i\right]$	(B1
	Multiply by 2i (or –2i)	M1*
	Add result to v	DM1
	Obtain answer $4\sqrt{3} - 1 + 6i$	A1)
	<i>OR:</i> State $\frac{z-v}{v-u} = ki$, or equivalent	(M1
	State $k = 2$	A1
	Substitute and solve for <i>z</i> even if i omitted	M1
	Obtain answer $4\sqrt{3} - 1 + 6i$	A1)
	Total:	4