Question	Answer	Marks
1	Express the LHS in terms of either $\cos \mathrm{x}$ and $\sin \mathrm{x}$ or in terms of $\tan \mathrm{x}$	B1
	Use Pythagoras	M1
	Obtain the given answer	A1
	Total:	3
2	EITHER: State a correct unsimplified version of the x or x^{2} term in the expansion of $\left(1+\frac{2}{3} x\right)^{-3}$ or $(3+2 x)^{-3}$ [Symbolic binomial coefficients, e.g. $\binom{-3}{2}$, are not sufficient for M1.]	(M1
	State correct first term $\frac{1}{27}$	B1
	Obtain term $-\frac{2}{27} x$	A1
	Obtain term $\frac{8}{81} x^{2}$	A1)
	OR: Differentiate expression and evaluate $\mathrm{f}(0)$ and $\mathrm{f}^{\prime}(0)$, where $\mathrm{f}^{\prime}(x)=k(3+2 x)^{-4}$	(M1
	State correct first term $\frac{1}{27}$	B1
	Obtain term $-\frac{2}{27} x$	A1
	Obtain term $\frac{8}{81} x^{2}$	A1)
	Total:	4
3	Rearrange as $3 u^{2}+4 u-4=0$, or $3 \mathrm{e}^{2 x}+4 \mathrm{e}^{x}-4=0$, or equivalent	B1
	Solve a 3-term quadratic for e^{x} or for u	M1
	Obtain $\mathrm{e}^{x}=\frac{2}{3}$ or $u=\frac{2}{3}$	A1
	Obtain answer $x=-0.405$ and no other	A1
	Total:	4

Question	Answer	Marks
4	Integrate by parts and reach $a \theta \cos \frac{1}{2} \theta+b \int \cos \frac{1}{2} \theta \mathrm{~d} \theta$	*M1
	Complete integration and obtain indefinite integral $-2 \theta \cos \frac{1}{2} \theta+4 \sin \frac{1}{2} \theta$	A1
	Substitute limits correctly, having integrated twice	DM1
	Obtain final answer $(4-\pi) / \sqrt{2}$, or exact equivalent	A1
	Total:	4
5(i)	Use the chain rule	M1
	Obtain correct derivative in any form	A1
	Use correct trigonometry to express derivative in terms of $\tan x$	M1
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4 \tan x}{4+\tan ^{2} x}$, or equivalent	A1
	Total:	4
5(ii)	Equate derivative to -1 and solve a 3-term quadratic for $\tan x$	M1
	Obtain answer $x=1.11$ and no other in the given interval	A1
	Total:	2
6(i)	Calculate the value of a relevant expression or expressions at $x=2.5$ and at another relevant value, e.g. $x=3$	M1
	Complete the argument correctly with correct calculated values	A1
	Total:	2
6(ii)	State a suitable equation, e.g. $x=\pi+\tan ^{-1}(1 /(1-x))$ without suffices	B1
	Rearrange this as $\cot x=1-x$, or commence working vice versa	B1
	Total:	2
6(iii)	Use the iterative formula correctly at least once	M1
	Obtain final answer 2.576 only	A1
	Show sufficient iterations to 5 d.p. to justify 2.576 to 3 d.p., or show there is a sign change in the interval $(2.5755,2.5765)$	A1
	Total:	3

Question	Answer	Marks
7(i)	Use correct quotient rule or product rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and solve for x	M1
	Obtain $x=2$	A1
	Total:	4
7(ii)	State or imply ordinates $1.6487 \ldots, 1.3591 \ldots, 1.4938 \ldots$	B1
	Use correct formula, or equivalent, with $h=1$ and three ordinates	M1
	Obtain answer 2.93 only	A1
	Total:	3
7(iii)	Explain why the estimate would be less than E	B1
	Total:	1
8(i)	Justify the given differential equation	B1
	Total:	1
8(ii)	Separate variables correctly and attempt to integrate one side	B1
	Obtain term $k t$, or equivalent	B1
	Obtain term $-\ln (50-x)$, or equivalent	B1
	Evaluate a constant, or use limits $x=0, t=0$ in a solution containing terms $a \ln (50-x)$ and $b t$	M1*
	Obtain solution $-\ln (50-x)=k t-\ln 50$, or equivalent	A1
	Use $x=25, t=10$ to determine k	DM1
	Obtain correct solution in any form, e.g. $\ln 50-\ln (50-x)=\frac{1}{10}(\ln 2) t$	A1
	Obtain answer $x=50(1-\exp (-0.0693 t))$, or equivalent	A1
	Total:	8

Question	Answer	Marks
9(i)	State or imply the form $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{3 x+2}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A=3, B=-2, C=-6$	A1
	Obtain a second value	A1
	Obtain the third value [Mark the form $\frac{A x+B}{x^{2}}+\frac{C}{3 x+2}$ using same pattern of marks.]	A1
	Total:	5
9(ii)	Integrate and obtain terms $3 \ln x=\frac{2}{x}-2 \ln (3 x+2)$ [The FT is on A, B and C] Note: Candidates who integrate the partial fraction $\frac{3 x-2}{x^{2}}$ by parts should obtain $3 \ln x+\frac{2}{x}-3$ or equivalent	B3 FT
	Use limits correctly, having integrated all the partial fractions, in a solution containing terms $a \ln x+\frac{b}{x}+c \ln (3 x+2)$	M1
	Obtain the given answer following full and exact working	A1
	Total:	5
10(i)	Carry out a correct method for finding a vector equation for $A B$	M1
	Obtain $\mathbf{r}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}+\lambda(2 \mathbf{i}+3 \mathbf{j}-\mathbf{k})$, or equivalent	A1
	Equate two pairs of components of general points on $A B$ and l and solve for λ or for μ	M1
	Obtain correct answer for λ or μ, e.g. $\lambda=\frac{5}{7}$ or $\mu=\frac{3}{7}$	A1
	Obtain $m=3$	A1
	Total:	5

Question	Answer	Marks
10(ii)	EITHER: Use scalar product to obtain an equation in a, b and c , e.g. $a-2 b-4 c=0$	(B1
	Form a second relevant equation, e.g. $2 a+3 b-c=0$ and solve for one ratio, e.g. a : b	M1
	Obtain final answer $a: b: c=14:-7: 7$	A1
	Use coordinates of a relevant point and values of a, b and c and find d	M1
	Obtain answer $14 x-7 y+7 z=42$, or equivalent	A1)
	OR 1: Attempt to calculate the vector product of relevant vectors, e.g. $(\mathbf{i}-2 \mathbf{j}-4 \mathbf{k}) \times(2 \mathbf{i}+3 \mathbf{j}-\mathbf{k})$	(M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. 14i-7j $+7 \mathbf{k}$	A1
	Substitute coordinates of a relevant point in $14 x-7 y+7 z=d$, or equivalent, and find d	M1
	Obtain answer $14 x-7 y+7 z=42$, or equivalent	A1)
	OR 2: Using a relevant point and relevant vectors, form a 2 -parameter equation for the plane	(M1
	State a correct equation, e.g. $\mathbf{r}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}+s(\mathbf{i}-2 \mathbf{j}-4 \mathbf{k})+t(2 \mathbf{i}+3 \mathbf{j}-\mathbf{k})$	A1
	State 3 correct equations in x, y, z, s and t	A1
	Eliminate s and t	M1
	Obtain answer $2 x-y+z=6$, or equivalent	A1)
	OR 3: Using a relevant point and relevant vectors, form a determinant equation for the plane	(M1
	State a correct equation, e.g. $\left\|\begin{array}{rrr}x-1 & y+2 & z-1 \\ 1 & -2 & -4 \\ 2 & 3 & -1\end{array}\right\|=0$	A1
	Attempt to expand the determinant	M1
	Obtain or imply two correct cofactors	A1
	Obtain answer $14 x-7 y+7 z=42$, or equivalent	A1)
	Total:	5

Question	Answer	Marks
11(a)	Solve for z or for w	M1
	Use $\mathrm{i}^{2}=-1$	M1
	Obtain $w=\frac{\mathrm{i}}{2-\mathrm{i}}$ or $z=\frac{2+\mathrm{i}}{2-\mathrm{i}}$	A1
	Multiply numerator and denominator by the conjugate of the denominator	M1
	Obtain $w=-\frac{1}{5}+\frac{2}{5} \mathrm{i}$	A1
	Obtain $z=\frac{3}{5}+\frac{4}{5} \mathrm{i}$	A1
	Total:	6
11(b)	EITHER: Find $\pm[2+(2-2 \sqrt{3}) \mathrm{i}]$	(B1
	Multiply by 2 i (or -2 i)	M1*
	Add result to v	DM1
	Obtain answer $4 \sqrt{3}-1+6 \mathrm{i}$	A1)
	OR: State $\frac{z-v}{v-u}=k$ i, or equivalent	(M1
	State $k=2$	A1
	Substitute and solve for z even if i omitted	M1
	Obtain answer $4 \sqrt{3}-1+6 \mathrm{i}$	A1)
	Total:	4

