Question	Answer	Marks
1	Use law of the logarithm of a power or a quotient	M1
	Remove logarithms and obtain a correct equation in x. e.g. $x^{2}+1=\mathrm{e} x^{2}$	A1
	Obtain answer 0.763 and no other	A1
	Total:	3
2	EITHER: State or imply non-modular inequality $(x-3)^{2}<(3 x-4)^{2}$, or corresponding equation	(B1
	Make reasonable attempt at solving a three term quadratic	M1
	Obtain critical value $x=\frac{7}{4}$	A1
	State final answer $x>\frac{7}{4}$ only	A1)
	OR1: State the relevant critical inequality $3-x<3 x-4$, or corresponding equation	(B1
	Solve for x	M1
	Obtain critical value $x=\frac{7}{4}$	A1
	State final answer $x>\frac{7}{4}$ only	A1)
	OR2: Make recognizable sketches of $y=\|x-3\|$ and $y=3 x-4$ on a single diagram	(B1
	Find x-coordinate of the intersection	M1
	$\text { Obtain } x=\frac{7}{4}$	A1
	State final answer $x>\frac{7}{4}$ only	A1)
	Total:	4

Question	Answer		Marks
3(i)	Use correct formulae to express the equation in terms of $\cos \theta$ and $\sin \theta$		M1
	Use Pythagoras and express the equation in terms of $\cos \theta$ only		M1
	Obtain correct 3-term equation, e.g. $2 \cos ^{4} \theta+\cos ^{2} \theta-2=0$		A1
		Total:	3
3(ii)	Solve a 3-term quadratic in $\cos ^{2} \theta$ for $\cos \theta$		M1
	Obtain answer $\theta=152.1^{\circ}$ only		A1
		Total:	2
4(i)	State $\frac{\mathrm{d} y}{\mathrm{~d} t}=4+\frac{2}{2 t-1}$		B1
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$		M1
	Obtain answer $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8 t-2}{2 t(2 t-1)}$, or equivalent e.g. $\frac{2}{t}+\frac{2}{4 t^{2}-2 t}$		A1
		Total:	3
4(ii)	Use correct method to find the gradient of the normal at $t=1$		M1
	Use a correct method to form an equation for the normal at $t=1$		M1
	Obtain final answer $x+3 y-14=0$, or horizontal equivalent		A1
		Total:	3

Question	Answer	Marks
5(i)	State $\frac{\mathrm{d} y}{\mathrm{~d} t}=-\frac{2 y}{(1+t)^{2}}$, or equivalent	B1
	Separate variables correctly and attempt integration of one side	M1
	Obtain term $\ln y$, or equivalent	A1
	Obtain term $\frac{2}{(1+t)}$, or equivalent	A1
	Use $y=100$ and $t=0$ to evaluate a constant, or as limits in an expression containing terms of the form $a \ln y$ and $\frac{b}{1+t}$	M1
	Obtain correct solution in any form, e.g. $\ln y=\frac{2}{1+t}-2+\ln 100$	A1
	Total:	6
5(ii)	State that the mass of B approaches $\frac{100}{\mathrm{e}^{2}}$, or exact equivalent	B1
	State or imply that the mass of A tends to zero	B1
	Total:	2

Question	Answer	Marks
6(i)	EITHER: Substitute $x=2-\mathrm{i}$ (or $x=2+\mathrm{i}$) in the equation and attempt expansions of x^{2} and x^{3}	(M1
	Equate real and/or imaginary parts to zero	M1
	Obtain $a=-2$	A1
	Obtain $b=10$	A1)
	OR1: Substitute $x=2-\mathrm{i}$ in the equation and attempt expansions of x^{2} and x^{3}	(M1
	Substitute $x=2+\mathrm{i}$ in the equation and add/subtract the two equations	M1
	Obtain $a=-2$	A1
	Obtain $b=10$	A1)
	OR2: Factorise to obtain $(x-2+\mathrm{i})(x-2-\mathrm{i})(x-p)\left(=\left(x^{2}-4 x+5\right)(x-p)\right)$	(M1
	Compare coefficients	M1
	Obtain $a=-2$	A1
	Obtain $b=10$	A1)
	OR3: Obtain the quadratic factor $\left(x^{2}-4 x+5\right)$	(M1
	Use algebraic division to obtain a real linear factor of the form $x-p$ and set the remainder equal to zero	M1
	Obtain $a=-2$	A1
	Obtain $b=10$	A1)
	OR4: Use $\alpha \beta=5$ and $\alpha+\beta=4$ in $\alpha \beta+\beta \gamma+\gamma \alpha=-3$	(M1
	Solve for γ and use in $\alpha \beta \gamma=-b$ and/or $\alpha+\beta+\gamma=-a$	M1
	Obtain $a=-2$	A1
	Obtain $b=10$	A1)

Question	Answer	Marks
	OR5: Factorise as $(x--(2-i))\left(x^{2}+e x+g\right)$ and compare coefficients to form an equation in a and b	(M1
	Equate real and/or imaginary parts to zero	M1
	Obtain $a=-2$	A1
	Obtain $b=10$	A1)
	Total:	4
6(ii)	Show a circle with centre $2-\mathrm{i}$ in a relatively correct position	B1
	Show a circle with radius 1 and centre not at the origin	B1
	Show the perpendicular bisector of the line segment joining 0 to -i	B1
	Shade the correct region	B1
	Total:	4
7(i)	Use quotient or chain rule	M1
	Obtain given answer correctly	A1
	Total:	2
7(ii)	EITHER: Multiply numerator and denominator of LHS by $1+\sin \theta$	(M1
	Use Pythagoras and express LHS in terms of $\sec \theta$ and $\tan \theta$	M1
	Complete the proof	A1)
	OR1: Express RHS in terms of $\cos \theta$ and $\sin \theta$	(M1
	Use Pythagoras and express RHS in terms of $\sin \theta$	M1
	Complete the proof	A1)
	OR2: Express LHS in terms of $\sec \theta$ and $\tan \theta$	(M1
	Multiply numerator and denominator by $\sec \theta+\tan \theta$ and use Pythagoras	M1
	Complete the proof	A1)
	Total:	3

Question	Answer	Marks
7(iii)	Use the identity and obtain integral $2 \tan \theta+2 \sec \theta-\theta$	B2
	Use correct limits correctly in an integral containing terms $a \tan \theta$ and $b \sec \theta$	M1
	Obtain answer $2 \sqrt{2}-\frac{1}{4} \pi$	A1
	Total:	4
8(i)	State or imply the form $\frac{A}{3 x+2}+\frac{B x+C}{x^{2}+5}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A=2, B=1, C=-3$	A1
	Obtain a second value	A1
	Obtain the third value	A1
	Total:	5
8(ii)	Use correct method to find the first two terms of the expansion of $(3 x+2)^{-1},\left(1+\frac{3}{2} x\right)^{-1}$, $\left(5+x^{2}\right)^{-1}$ or $\left(1+\frac{1}{5} x^{2}\right)^{-1}$ [Symbolic coefficients, e.g. $\binom{-1}{2}$ are not sufficient]	M1
	Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction. The FT is on A, B, C. from part (i)	$\begin{array}{r} \text { A1FT + } \\ \text { A1FT } \end{array}$
	Multiply out up to the term in x^{2} by $B x+C$, where $B C \neq 0$	M1
	Obtain final answer $\frac{2}{5}-\frac{13}{10} x+\frac{237}{100} x^{2}$, or equivalent	A1
	Total:	5
9 (i)	EITHER: Find $\overrightarrow{A P}$ for a general point P on l with parameter λ, e.g. $(8+3 \lambda,-3-\lambda, 4+2 \lambda)$	(B1
	Equate scalar product of $\overrightarrow{A P}$ and direction vector of l to zero and solve for λ	M1
	Obtain $\lambda=-\frac{5}{2}$ and foot of perpendicular $\frac{3}{2} \mathbf{i}+\frac{3}{2} \mathbf{j}+3 \mathbf{k}$	A1
	Carry out a complete method for finding the position vector of the reflection of A in l	M1
	Obtain answer $2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$	A1)

Question	Answer	Marks
	OR: Find $\overrightarrow{A P}$ for a general point P on l with parameter λ, e.g. $(8+3 \lambda,-3-\lambda, 4+2 \lambda)$	(B1
	Differentiate $\|A P\|^{2}$ and solve for λ at minimum	M1
	Obtain $\lambda=-\frac{5}{2}$ and foot of perpendicular $\frac{3}{2} \mathbf{i}+\frac{3}{2} \mathbf{j}+3 \mathbf{k}$	A1
	Carry out a complete method for finding the position vector of the reflection of A in l	M1
	Obtain answer $2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$	A1)
	Total:	5
9(ii)	EITHER: Use scalar product to obtain an equation in a, b and c, e.g. $3 a-b+2 c=0$	(B1
	Form a second relevant equation, e.g. $9 a-b+8 c=0$ and solve for one ratio, e.g. $a: b$	M1
	Obtain final answer $a: b: c=1: 1:-1$ and state plane equation $x+y-z=0$	A1)
	OR1: Attempt to calculate vector product of two relevant vectors, e.g. ($3 \mathbf{i}-\mathbf{j}+2 \mathbf{k}) \times(9 \mathbf{i}-\mathbf{j}+8 \mathbf{k})$	(M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $-6 \mathbf{i}-6 \mathbf{j}+6 \mathbf{k}$, and state plane equation $-x-y+z=0$	A1)
	OR2: Using a relevant point and relevant vectors, attempt to form a 2 -parameter equation for the plane, e.g. $\mathbf{r}=6 \mathbf{i}+6 \mathbf{k}+s(3 \mathbf{i}-\mathbf{j}+2 \mathbf{k})+t(9 \mathbf{i}-\mathbf{j}+8 \mathbf{k})$	(M1
	State 3 correct equations in x, y, z, s and t	A1
	Eliminate s and t and state plane equation $x+y-z=0$, or equivalent	A1)
	OR3: Using a relevant point and relevant vectors, attempt to form a determinant equation for the plane, e.g. $\left\|\begin{array}{ccc}x-3 & y-1 & z-4 \\ 3 & -1 & 2 \\ 9 & -1 & 8\end{array}\right\|=0$	(M1
	Expand a correct determinant and obtain two correct cofactors	A1
	Obtain answer $-6 x-6 y+6 z=0$, or equivalent	A1)
	Total:	3

Question	Answer	Marks
9(iii)	EITHER: Using the correct processes, divide the scalar product of $\overrightarrow{O A}$ and a normal to the plane by the modulus of the normal or make a recognisable attempt to apply the perpendicular formula	(M1
	Obtain a correct expression in any form, e.g. $\frac{1+2-4}{\sqrt{\left(1^{2}+1^{2}+(-1)^{2}\right)}}$, or equivalent	A1 FT
	Obtain answer $1 / \sqrt{3}$, or exact equivalent	A1)
	OR1: Obtain equation of the parallel plane through A, e.g. $x+y-z=-1$ [The f.t. is on the plane found in part (ii).]	(B1 FT
	Use correct method to find its distance from the origin	M1
	Obtain answer $1 / \sqrt{3}$, or exact equivalent	A1)
	OR2: Form equation for the intersection of the perpendicular through A and the plane [FT on their \mathbf{n}]	(B1 FT
	Solve for λ	M1
	$\|\lambda \mathbf{n}\|=\frac{1}{\sqrt{3}}$	A1)
	Total:	3
10(i)	Use correct product rule	M1
	Obtain correct derivative in any form $\left(y^{\prime}=2 x \cos 2 x-2 x^{2} \sin 2 x\right)$	A1
	Equate to zero and derive the given equation	A1
	Total:	3
10(ii)	Use the iterative formula correctly at least once e.g. $0.5 \rightarrow 0.55357 \rightarrow 0.53261 \rightarrow 0.54070 \rightarrow 0.53755$	M1
	Obtain final answer 0.54	A1
	Show sufficient iterations to 4 d.p. to justify 0.54 to 2 d.p., or show there is a sign change in the interval $(0.535,0.545)$	A1
	Total:	3

Question	Answer	Marks
$10($ iii $)$	Integrate by parts and reach $a x^{2} \sin 2 x+b \int x \sin 2 x \mathrm{~d} x$	*M1
	Obtain $\frac{1}{2} x^{2} \sin 2 x-\int 2 x \cdot \frac{1}{2} \sin 2 x \mathrm{~d} x$	A1
	Complete integration and obtain $\frac{1}{2} x^{2} \sin 2 x+\frac{1}{2} x \cos 2 x-\frac{1}{4} \sin 2 x$, or equivalent	A1
	Substitute limits $x=0, x=\frac{1}{4} \pi$, having integrated twice	DM1
	Obtain answer $\frac{1}{32}\left(\pi^{2}-8\right)$, or exact equivalent	A1

