Question	Answer	Marks
1	EITHER: State or imply non-modular inequality $(2 x+1)^{2}<(3(x-2))^{2}$, or corresponding quadratic equation, or pair of linear equations $(2 x+1)= \pm 3(x-2)$	(B1
	Make reasonable solution attempt at a 3-term quadratic e.g. $5 x^{2}-40 x+35=0$ or solve two linear equations for x	M1
	Obtain critical values $x=1$ and $x=7$	A1
	State final answer $x<1$ and $x>7$	A1)
	OR: Obtain critical value $x=7$ from a graphical method, or by inspection, or by solving a linear equation or inequality	(B1
	Obtain critical value $x=1$ similarly	B2
	State final answer $x<1$ and $x>7$	B1)
	Total:	4
2	EITHER: State a correct unsimplified version of the x or x^{2} or x^{3} term in the expansion of $(1+6 x)^{-\frac{1}{3}}$	(M1
	State correct first two terms 1-2x	A1
	Obtain term $8 x^{2}$	A1
	Obtain term $-\frac{112}{3} x^{3}\left(37 \frac{1}{3} x^{3}\right)$ in final answer	A1)
	OR: Differentiate expression and evaluate $\mathrm{f}(0)$ and $\mathrm{f}^{\prime}(0)$, where $\mathrm{f}^{\prime}(x)=k(1+6 x)^{-\frac{4}{3}}$	(M1
	Obtain correct first two terms 1-2x	A1
	Obtain term $8 x^{2}$	A1
	Obtain term $-\frac{112}{3} x^{3}$ in final answer	A1)
	Total:	4

Question	Answer		Marks
3(i)	Remove logarithms correctly and obtain $\mathrm{e}^{x}=\frac{1-y}{y}$		B1
	Obtain the given answer $y=\frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}}$ following full working		B1
		Total:	2
3(ii)	State integral $k \ln \left(1+\mathrm{e}^{-x}\right)$ where $k= \pm 1$		*M1
	State correct integral $-\ln \left(1+\mathrm{e}^{-x}\right)$		A1
	Use limits correctly		DM1
	Obtain the given answer $\ln \left(\frac{2 e}{e+1}\right)$ following full working		A1
		Total:	4
4(i)	Use chain rule to differentiate $x \quad\left(\frac{\mathrm{~d} x}{\mathrm{~d} \theta}=-\frac{\sin \theta}{\cos \theta}\right)$		M1
	State $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=3-\sec ^{2} \theta$		B1
	$\text { Use } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} \theta} \div \frac{\mathrm{d} x}{\mathrm{~d} \theta}$		M1
	Obtain correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in any form e.g. $\frac{3-\sec ^{2} \theta}{-\tan \theta}$		A1
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\tan ^{2} \theta-2}{\tan \theta}$, or equivalent		A1
		Total:	5
4(ii)	Equate gradient to -1 and obtain an equation in $\tan \theta$		M1
	Solve a 3 term quadratic $\left(\tan ^{2} \theta+\tan \theta-2=0\right)$ in $\tan \theta$		M1
	Obtain $\theta=\frac{\pi}{4}$ and $y=\frac{3 \pi}{4}-1$ only		A1
		Total:	3

Question	Answer	Marks
5(i)	Use correct sector formula at least once and form an equation in r and x	M1
	Obtain a correct equation in any form	A1
	Rearrange in the given form	A1
	Total:	3
5(ii)	Calculate values of a relevant expression or expressions at $x=1$ and $x=1.5$	M1
	Complete the argument correctly with correct calculated values	A1
	Total:	2
5(iii)	Use the iterative formula correctly at least once	M1
	Obtain final answer 1.374	A1
	Show sufficient iterations to 5 d.p. to justify 1.374 to 3 d.p., or show there is a sign change in the interval $(1.3745,1.3755)$	A1
	Total:	3
6(i)	State or obtain coordinates ($1,2,1$) for the mid-point of $A B$	B1
	Verify that the midpoint lies on m	B1
	State or imply a correct normal vector to the plane, e.g. $2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$	B1
	State or imply a direction vector for the segment $A B$, e.g. $-4 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$	B1
	Confirm that m is perpendicular to $A B$	B1
	Total:	5
6(ii)	State or imply that the perpendicular distance of m from the origin is $\frac{5}{3}$, or unsimplified equivalent	B1
	State or imply that n has an equation of the form $2 x+2 y-z=k$	B1
	Obtain answer $2 x+2 y-z=2$	B1
	Total:	3

Question	Answer	Marks
7(i)	State that $u-2 w=-7-\mathrm{i}$	B1
	EITHER: Multiply numerator and denominator of $\frac{u}{w}$ by $3-4 \mathrm{i}$, or equivalent	(M1
	Simplify the numerator to $25+25$ i or denominator to 25	A1
	Obtain final answer $1+\mathrm{i}$	A1)
	OR: Obtain two equations in x and y and solve for x or for y	(M1
	Obtain $x=1$ or $y=1$	A1
	Obtain final answer $1+\mathrm{i}$	A1)
	Total:	4
7(ii)	Find the argument of $\frac{u}{w}$	M1
	Obtain the given answer	A1
	Total:	2
7(iii)	State that $O B$ and $C A$ are parallel	B1
	State that $C A=2 O B$, or equivalent	B1
	Total:	2
8(i)	Use $\sin (A-B)$ formula and obtain an expression in terms of $\sin x$ and $\cos x$	M1
	Collect terms and reach $\sqrt{3} \sin x-2 \cos x$, or equivalent	A1
	Obtain $R=\sqrt{7}$	A1
	Use trig formula to find α	M1
	Obtain $\alpha=49.11^{\circ}$ with no errors seen	A1
	Total:	5

Question	Answer	Marks
8(ii)	Evaluate $\sin ^{-1}(1 / \sqrt{7})$ to at least 1 d.p. (22.21° to 2 d.p. $)$	B1 FT
	Use a correct method to find a value of x in the interval $0^{\circ}<x<180^{\circ}$	M1
	Obtain answer 71.3°	A1
	[ignore answers outside given range.]	
	Total:	3
9(i)	Carry out a relevant method to obtain A and B such that $\frac{1}{x(2 x+3)} \equiv \frac{A}{x}+\frac{B}{2 x+3}$, or equivalent	M1
	Obtain $A=\frac{1}{3}$ and $B=-\frac{2}{3}$, or equivalent	A1
	Total:	2
9(ii)	Separate variables and integrate one side	B1
	Obtain term $\ln y$	B1
	Integrate and obtain terms $\frac{1}{3} \ln x-\frac{1}{3} \ln (2 x+3)$, or equivalent	B2 FT
	Use $x=1$ and $y=1$ to evaluate a constant, or as limits, in a solution containing $a \ln y, b \ln x, c \ln (2 x+3)$	M1
	Obtain correct solution in any form, e.g. $\ln y=\frac{1}{3} \ln x-\frac{1}{3} \ln (2 x+3)+\frac{1}{3} \ln 5$	A1
	Obtain answer $y=1.29$ (3s.f. only)	A1
	Total:	7
10(i)	State or imply $\mathrm{d} u=-\sin x \mathrm{~d} x$	B1
	Using correct double angle formula, express the integral in terms of u and $\mathrm{d} u$	M1
	Obtain integrand $\pm\left(2 u^{2}-1\right)^{2}$	A1
	Change limits and obtain correct integral $\int_{\frac{1}{\sqrt{2}}}^{1}\left(2 u^{2}-1\right)^{2} \mathrm{~d} u$ with no errors seen	A1
	Substitute limits in an integral of the form $a u^{5}+b u^{3}+c u$	M1
	Obtain answer $\frac{1}{15}(7-4 \sqrt{2})$, or exact simplified equivalent	A1
	Total:	6

Question	Answer	Marks
$10($ ii)	Use product rule and chain rule at least once	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and use trig formulae to obtain an equation in $\cos x$ and $\sin x$	M1
	Use correct methods to obtain an equation in $\cos x$ or $\sin x$ only	M1
	Obtain $10 \cos ^{2} x=9$ or $10 \sin ^{2} x=1$, or equivalent	A1
	Obtain answer 0.32	A1
		$\mathbf{6}$

