Question	Answer	Marks
1	EITHER: State or imply non-modular inequality $(2x+1)^2 < (3(x-2))^2$, or corresponding quadratic equation, or pair of linear equations $(2x+1) = \pm 3(x-2)$	(B1
	Make reasonable solution attempt at a 3-term quadratic e.g. $5x^2 - 40x + 35 = 0$ or solve two linear equations for x	M1
	Obtain critical values $x = 1$ and $x = 7$	A1
	State final answer $x < 1$ and $x > 7$	A1)
	OR: Obtain critical value $x = 7$ from a graphical method, or by inspection, or by solving a linear equation or inequality	(B1
	Obtain critical value $x = 1$ similarly	B2
	State final answer $x < 1$ and $x > 7$	B1)
	Total:	4
2	EITHER: State a correct unsimplified version of the x or x^2 or x^3 term in the expansion of $(1+6x)^{-\frac{1}{3}}$	(M1
	State correct first two terms $1-2x$	A1
	Obtain term $8x^2$	A1
	Obtain term $-\frac{112}{3}x^3\left(37\frac{1}{3}x^3\right)$ in final answer	A1)
	OR: Differentiate expression and evaluate $f(0)$ and $f'(0)$, where $f'(x) = k(1+6x)^{-\frac{4}{3}}$	(M1
	Obtain correct first two terms $1 - 2x$	A1
	Obtain term $8x^2$	A1
	Obtain term $-\frac{112}{3}x^3$ in final answer	A1)
	Total:	4

9709/31

Question	Answer	Marks
3(i)	Remove logarithms correctly and obtain $e^x = \frac{1-y}{y}$	B1
	Obtain the given answer $y = \frac{e^{-x}}{1 + e^{-x}}$ following full working	B1
	Total:	2
3(ii)	State integral $k \ln(1 + e^{-x})$ where $k = \pm 1$	*M1
	State correct integral $-\ln(1+e^{-x})$	A1
	Use limits correctly	DM1
	Obtain the given answer $\ln\left(\frac{2e}{e+1}\right)$ following full working	A1
	Total:	4
4(i)	Use chain rule to differentiate $x = \left(\frac{dx}{d\theta} = -\frac{\sin\theta}{\cos\theta}\right)$	M1
	State $\frac{dy}{d\theta} = 3 - \sec^2 \theta$	B1
	Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$	M1
	Obtain correct $\frac{dy}{dx}$ in any form e.g. $\frac{3 - \sec^2 \theta}{-\tan \theta}$	A1
	Obtain $\frac{dy}{dx} = \frac{\tan^2 \theta - 2}{\tan \theta}$, or equivalent	A1
	Total:	5
4(ii)	Equate gradient to -1 and obtain an equation in $\tan \theta$	M1
	Solve a 3 term quadratic $(\tan^2 \theta + \tan \theta - 2 = 0)$ in $\tan \theta$	M1
	Obtain $\theta = \frac{\pi}{4}$ and $y = \frac{3\pi}{4} - 1$ only	A1
	Total:	3

Question	Answer	Marks
5(i)	Use correct sector formula at least once and form an equation in r and x	M1
	Obtain a correct equation in any form	A1
	Rearrange in the given form	A1
	Total:	3
5(ii)	Calculate values of a relevant expression or expressions at $x = 1$ and $x = 1.5$	M1
	Complete the argument correctly with correct calculated values	A1
	Total:	2
5(iii)	Use the iterative formula correctly at least once	M1
	Obtain final answer 1.374	A1
	Show sufficient iterations to 5 d.p. to justify 1.374 to 3 d.p., or show there is a sign change in the interval (1.3745, 1.3755)	A1
	Total:	3
6(i)	State or obtain coordinates $(1, 2, 1)$ for the mid-point of <i>AB</i>	B 1
	Verify that the midpoint lies on <i>m</i>	B 1
	State or imply a correct normal vector to the plane, e.g. $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$	B1
	State or imply a direction vector for the segment <i>AB</i> , e.g. $-4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$	B1
	Confirm that <i>m</i> is perpendicular to <i>AB</i>	B1
	Total:	5
6(ii)	State or imply that the perpendicular distance of <i>m</i> from the origin is $\frac{5}{3}$, or unsimplified equivalent	B1
	State or imply that <i>n</i> has an equation of the form $2x + 2y - z = k$	B1
	Obtain answer $2x + 2y - z = 2$	B1
	Total:	3

Question	Answer		Marks
7(i)	State that $u - 2w = -7 - i$		B1
	EITHER: Multiply numerator and denominator of $\frac{u}{w}$ by 3 – 4i, or equivalent		(M1
	Simplify the numerator to 25 + 25i or denominator to 25		A1
	Obtain final answer 1 + i		A1)
	OR: Obtain two equations in x and y and solve for x or for y		(M1
	Obtain $x = 1$ or $y = 1$		A1
	Obtain final answer 1 + i		A1)
		Total:	4
7(ii)	Find the argument of $\frac{u}{w}$		M1
	Obtain the given answer		A1
	,	Total:	2
7(iii)	State that <i>OB</i> and <i>CA</i> are parallel		B1
	State that $CA = 2OB$, or equivalent		B1
		Total:	2
8(i)	Use $sin(A - B)$ formula and obtain an expression in terms of $sin x$ and $cos x$		M1
	Collect terms and reach $\sqrt{3} \sin x - 2 \cos x$, or equivalent		A1
	Obtain $R = \sqrt{7}$		A1
	Use trig formula to find α		M1
	Obtain $\alpha = 49.11^{\circ}$ with no errors seen		A1
		Total:	5

Question	Answer	Marks
8(ii)	Evaluate $\sin^{-1}(1/\sqrt{7})$ to at least 1 d.p. (22.21° to 2 d.p.)	B1 FT
	Use a correct method to find a value of x in the interval $0^{\circ} < x < 180^{\circ}$	M1
	Obtain answer 71.3°	A1
	[ignore answers outside given range.]	
	Total:	3
9(i)	Carry out a relevant method to obtain A and B such that $\frac{1}{x(2x+3)} \equiv \frac{A}{x} + \frac{B}{2x+3}$, or equivalent	M1
	Obtain $A = \frac{1}{3}$ and $B = -\frac{2}{3}$, or equivalent	A1
	Total:	2
9(ii)	Separate variables and integrate one side	B1
	Obtain term ln y	B1
	Integrate and obtain terms $\frac{1}{3}\ln x - \frac{1}{3}\ln(2x+3)$, or equivalent	B2 FT
	Use $x = 1$ and $y = 1$ to evaluate a constant, or as limits, in a solution containing $a \ln y$, $b \ln x$, $c \ln(2x+3)$	M1
	Obtain correct solution in any form, e.g. $\ln y = \frac{1}{3} \ln x - \frac{1}{3} \ln(2x+3) + \frac{1}{3} \ln 5$	A1
	Obtain answer $y = 1.29$ (3s.f. only)	A1
	Total:	7
10(i)	State or imply $du = -\sin x dx$	B 1
	Using correct double angle formula, express the integral in terms of u and du	M1
	Obtain integrand $\pm (2u^2 - 1)^2$	A1
	Change limits and obtain correct integral $\int_{\frac{1}{\sqrt{2}}}^{1} (2u^2 - 1)^2 du$ with no errors seen	A1
	Substitute limits in an integral of the form $au^5 + bu^3 + cu$	M1
	Obtain answer $\frac{1}{15}(7-4\sqrt{2})$, or exact simplified equivalent	A1
	Total:	6

Question	Answer	Marks
10(ii)	Use product rule and chain rule at least once	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and use trig formulae to obtain an equation in $\cos x$ and $\sin x$	M1
	Use correct methods to obtain an equation in $\cos x$ or $\sin x$ only	M1
	Obtain $10\cos^2 x = 9$ or $10\sin^2 x = 1$, or equivalent	A1
	Obtain answer 0.32	A1
	Total:	6