

Question	Answer	Marks	Guidance
1	State or imply non-modulus equation $(x + a)^2 = (2x - 5a)^2$ or pair of linear equations	B1	SR B1 for $x = 6a$
	Attempt solution of quadratic equation or of pair of linear equations	M1	Allow M1 if $\frac{4}{3}$ and 6 seen
	Obtain, as final answers, $6a$ and $\frac{4}{3}a$	A1	
	Total:	3	
2	Apply logarithms to both sides and apply power law	*M1	
	Obtain $(x+4)\log 3 = 2x\log 5$ or equivalent	A1	
	Solve linear equation for <i>x</i>	DM1	dep *M
	Obtain 2.07	A1	Allow greater accuracy
	Total:	4	
3(i)	Draw sketch of $y = x^3$	*B1	May be implied by part graph in first quadrant
	Draw straight line with negative gradient crossing positive <i>y</i> -axis and indicate one intersection	DB1	dep *B
	Total:	2	
3(ii)	Use iterative formula correctly at least once	M1	
	Obtain final answer 1.926	A1	
	Show sufficient iterations to justify 4 sf or show sign change in interval (1.9255,1.9265)	A1	
	Total:	3	

Question	Answer	Marks	Guidance
4	Use quotient rule (or product rule) to find first derivative	M1	
	Obtain $\frac{8xe^{4x} + 10e^{4x}}{(2x+3)^2}$ or equivalent	A1	
	Substitute $x = 0$ to obtain gradient $\frac{10}{9}$	A1	
	Form equation of tangent through $(0,\frac{1}{3})$ with numerical gradient	M1	
	$Obtain \ 10x - 9y + 3 = 0$	A1	
	Total:	5	

Question	Answer	Marks	Guidance
5	State or imply $\ln y = \ln K - 2x \ln a$	B1	
	EITHER:		
	Obtain -0.525 as gradient of line	(M1	
	Equate their $-2\ln a$ to their gradient and solve for a	M1	Allow $2 \ln a$ = their gradient for M1
	Obtain $a = 1.3$	A1	
	Substitute to find value of <i>K</i>	M1	
	Obtain $K = 8.4$	A1)	
	OR:		
	Obtain two equations using coordinates correctly	(M1	
	Solve these equations to obtain $2 \ln a$ or equivalent	M1	
	Obtain $a = 1.3$	A1	
	Substitute to find value of <i>K</i>	M1	
	Obtain $K = 8.4$	A1)	
	Total:	6	

Question	Answer	Marks	Guidance
6(i)	Evaluate expression when $x = -2$	M1	
	Obtain 0 with all necessary detail present	A1	Use of $f(x) = (x+2)(ax^2 + bx + c)$ to find a, b and c , allow M1 A0 Use of $f(x) = (x+2)(ax^2 + bx + c) + d$ to find a, b and c , and show $d = 0$, allow M1 A1
	Carry out division, or equivalent, at least as far as x^2 and x terms in quotient	M1	
	Obtain $6x^2 + x - 35$	A1	
	Obtain factorised expression $(x+2)(2x+5)(3x-7)$	A1	
	Total:	5	
6(ii)	State or imply substitution $x = \frac{1}{y}$ or equivalent	M1	
	Obtain $-\frac{1}{2}$, $-\frac{2}{5}$, $\frac{3}{7}$	A1	
	Total:	2	
7(a)	Obtain $\int (2\cos^2\theta - \cos\theta - 3)d\theta$	B1	
	Attempt use of identity to obtain integrand involving $\cos 2\theta$ and $\cos \theta$	M1	
	Integrate to obtain form $k_1 \sin 2\theta + k_2 \sin \theta + k_3 \theta$ for non-zero constants	M1	
	Obtain $\frac{1}{2}\sin 2\theta - \sin \theta - 2\theta + c$	A1	
	Total:	4	

9709/23

Question	Answer	Marks	Guidance
7(b)(i)	Integrate to obtain form $k_1 \ln(2x+1) + k_2 \ln(x)$ or $k_1 \ln(2x+1) + k_2 \ln(2x)$	M1	
	Obtain $2\ln(2x+1) + \frac{1}{2}\ln x$ or $2\ln(2x+1) + \frac{1}{2}\ln(2x)$	A1	
	Total:	2	
7(b)(ii)	Use relevant logarithm power law for expression obtained from application of limits	M1	
	Use relevant logarithm addition / subtraction laws	M1	
	Obtain ln18	A1	
	Total:	3	
8(i)	Obtain $\frac{dx}{dt} = 2\sin 2t$	B1	
	Obtain $\frac{dy}{dt} = 6\sin^2 t \cos t - 9\cos^2 t \sin t$	B1	
	Use $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ for their first derivatives	M1	
	Use identity $\sin 2t = 2\sin t \cos t$	B1	
	Simplify to obtain $\frac{3}{2}\sin t - \frac{9}{4}\cos t$ with necessary detail present	A1	
	Total:	5	

Question	Answer	Marks	Guidance
8(ii)	Equate $\frac{dy}{dx}$ to zero and obtain $\tan t = k$	M1	
	Obtain $\tan t = \frac{3}{2}$ or equivalent	A1	
	Substitute value of t to obtain coordinates (2.38, 2.66)	A1	
	Total:	3	
8(iii)	Identify $t = \frac{1}{4}\pi$	B1	
	Substitute to obtain exact value for gradient of the normal	M1	
	Obtain gradient $\frac{4}{3}\sqrt{2}$, $\frac{8}{3\sqrt{2}}$ or similarly simplified exact equivalent	A1	
	Total:	3	