Question	Answer	Marks	Guidance
1	State or imply non-modulus equation $(x+a)^{2}=(2 x-5 a)^{2}$ or pair of linear equations	B1	SR B1 for $x=6 a$
	Attempt solution of quadratic equation or of pair of linear equations	M1	Allow M1 if $\frac{4}{3}$ and 6 seen
	Obtain, as final answers, $6 a$ and $\frac{4}{3} a$	A1	
	Total:	3	
2	Apply logarithms to both sides and apply power law	*M1	
	Obtain $(x+4) \log 3=2 x \log 5$ or equivalent	A1	
	Solve linear equation for x	DM1	dep *M
	Obtain 2.07	A1	Allow greater accuracy
	Total:	4	
3(i)	Draw sketch of $y=x^{3}$	*B1	May be implied by part graph in first quadrant
	Draw straight line with negative gradient crossing positive y-axis and indicate one intersection	DB1	dep *B
	Total:	2	
3(ii)	Use iterative formula correctly at least once	M1	
	Obtain final answer 1.926	A1	
	Show sufficient iterations to justify 4 sf or show sign change in interval (1.9255,1.9265)	A1	
	Total:	3	

Question	Answer	Marks	Guidance
4	Use quotient rule (or product rule) to find first derivative	M1	
	Obtain $\frac{8 x \mathrm{e}^{4 x}+10 \mathrm{e}^{4 x}}{(2 x+3)^{2}}$ or equivalent	A1	
	Substitute $x=0$ to obtain gradient $\frac{10}{9}$	A1	
	Form equation of tangent through $\left(0, \frac{1}{3}\right)$ with numerical gradient	M1	
	Obtain $10 x-9 y+3=0$	A1	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
5	State or imply $\ln y=\ln K-2 x \ln a$	B1	
	EITHER:		
	Obtain -0.525 as gradient of line	(M1	
	Equate their $-2 \ln a$ to their gradient and solve for a	M1	Allow $2 \ln a=$ their gradient for M1
	Obtain $a=1.3$	A1	
	Substitute to find value of K	M1	
	Obtain $K=8.4$	A1)	
	OR:		
	Obtain two equations using coordinates correctly	(M1	
	Solve these equations to obtain $2 \ln a$ or equivalent	M1	
	Obtain $a=1.3$	A1	
	Substitute to find value of K	M1	
	Obtain $K=8.4$	A1)	
		6	

Question	Answer	Marks	Guidance
6(i)	Evaluate expression when $x=-2$	M1	
	Obtain 0 with all necessary detail present	A1	Use of $\mathrm{f}(x)=(x+2)\left(a x^{2}+b x+c\right)$ to find a, b and c, allow M1 A0 Use of $\mathrm{f}(x)=(x+2)\left(a x^{2}+b x+c\right)+d$ to find a, b and c, and show $d=0$, allow M1 A1
	Carry out division, or equivalent, at least as far as x^{2} and x terms in quotient	M1	
	Obtain $6 x^{2}+x-35$	A1	
	Obtain factorised expression $(x+2)(2 x+5)(3 x-7)$	A1	
	Total:	5	
6(ii)	State or imply substitution $x=\frac{1}{y}$ or equivalent	M1	
	Obtain $-\frac{1}{2},-\frac{2}{5}, \frac{3}{7}$	A1	
	Total:	2	
7(a)	Obtain $\int\left(2 \cos ^{2} \theta-\cos \theta-3\right) \mathrm{d} \theta$	B1	
	Attempt use of identity to obtain integrand involving $\cos 2 \theta$ and $\cos \theta$	M1	
	Integrate to obtain form $k_{1} \sin 2 \theta+k_{2} \sin \theta+k_{3} \theta$ for non-zero constants	M1	
	Obtain $\frac{1}{2} \sin 2 \theta-\sin \theta-2 \theta+c$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
7(b)(i)	Integrate to obtain form $k_{1} \ln (2 x+1)+k_{2} \ln (x)$ or $k_{1} \ln (2 x+1)+k_{2} \ln (2 x)$	M1	
	Obtain $2 \ln (2 x+1)+\frac{1}{2} \ln x$ or $2 \ln (2 x+1)+\frac{1}{2} \ln (2 x)$	A1	
	Total:	2	
7(b)(ii)	Use relevant logarithm power law for expression obtained from application of limits	M1	
	Use relevant logarithm addition / subtraction laws	M1	
	Obtain $\ln 18$	A1	
	Total:	3	
8(i)	Obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=2 \sin 2 t$	B1	
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} t}=6 \sin ^{2} t \cos t-9 \cos ^{2} t \sin t$	B1	
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} / \frac{\mathrm{d} x}{\mathrm{~d} t}$ for their first derivatives	M1	
	Use identity $\sin 2 t=2 \sin t \cos t$	B1	
	Simplify to obtain $\frac{3}{2} \sin t-\frac{9}{4} \cos t$ with necessary detail present	A1	
	Total:	5	

Question	Answer	Marks	Guidance
8(ii)	Equate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to zero and obtain $\tan t=k$	M1	
	Obtain $\tan t=\frac{3}{2}$ or equivalent	A1	
	Substitute value of t to obtain coordinates (2.38, 2.66)	A1	
	Total:	3	
8(iii)	Identify $t=\frac{1}{4} \pi$	B1	
	Substitute to obtain exact value for gradient of the normal	M1	
	Obtain gradient $\frac{4}{3} \sqrt{2}, \frac{8}{3 \sqrt{2}}$ or similarly simplified exact equivalent	A1	
	Total:	3	

