9709/21

Question	Answer	Marks	Guidance
1	Take logarithms of both sides and apply power law to both sides	M1	Allow $y = \frac{\log 5}{4\log 3}$ for M1 A1
	Rearrange to the form $y = \frac{\ln 5}{4\ln 3}x$ or equivalent	A1	
	Obtain $m = 0.366$	A1	
	Total:	3	
2	State or imply non-modulus inequality $(4-x)^2 \le (3-2x)^2$ or corresponding equation, pair of linear equations or linear inequalities	M1	
	Attempt solution of 3-term quadratic equation, of two linear equations or of two linear inequalities	M1	
	Obtain critical values -1 and $\frac{7}{3}$	A1	SR Allow B1 for $x \le -1$ only or $x \ge \frac{7}{3}$ only if first M1 is not given
	State answer $x \leq -1, x \geq \frac{7}{3}$	A1	Do not accept $\frac{7}{3} \le x \le -1$ or $-1 \ge x \ge \frac{7}{3}$ for A1
	Total:	4	

Question	Answer	Marks	Guidance
3	Integrate to obtain form $ke^{\frac{1}{2}x+3}$ where k is constant not equal to 4	M1	
	Obtain correct $8e^{\frac{1}{2}x+3}$	A1	Allow unsimplified for A1
	Obtain $8e^{\frac{1}{2}a+3} - 8e^3 = 835$ or equivalent	A1	
	Carry out correct process to find <i>a</i> from equation of form $ke^{\frac{1}{2}a+3} = c$	M1	
	Obtain 3.65	A1	If 3.65 seen with no actual attempt at integration, award B1 if it is thought that trial and improvement with calculator has been used.
	Total:	5	
4(i)	Use iteration correctly at least once	M1	
	Obtain final answer 2.08	A1	
	Show sufficient iterations to 4 dp to justify answer or show sign change in interval $(2.075, 2.085)$	A1	
	Total:	3	
4(ii)	State or clearly imply equation $x = \frac{2x^2 + x + 9}{(x+1)^2}$ or same equation using α	B1	
	Carry out relevant simplification	M1	
	Obtain ³ √9	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	State $R = 3$	B1	Allow marks for (i) if seen in (ii)
	Use appropriate trigonometric formula to find α	M1	
	Obtain 48.19 with no errors seen	A1	
	Total:	3	
5(ii)	Carry out evaluation of $\cos^{-1}\frac{1}{3}(=70.528)$	M1	M1 for $\cos^{-1}\left(\frac{1}{R}\right)$
	Obtain correct answer 118.7	A1	
	Carry out correct method to find second answer	M1	
	Obtain 337.7 and no others between 0 and 360	A1	
	Total:	4	
6(i)	State or imply correct <i>y</i> -values 0, $\tan \frac{1}{6}\pi$, $\tan \frac{2}{6}\pi$	B1	Some candidates have their calculator in degree mode when working out $\tan \frac{\pi}{6}$ etc. this gives 0.00915 and 0.0183. Allow B1 .
	Use correct formula, or equivalent, with $h = \frac{1}{12}\pi$ and y-values	M1	Must be convinced they have considered 3 values for <i>y</i> for M1
	Obtain 0.378	A1	
	Total:	3	

9709/21

Question	Answer	Marks	Guidance
6(ii)	State or imply $\pi \int (\sec^2 2x - 1) dx$	B1	
	Integrate to obtain $k_1 \tan 2x + k_2 x$, any non-zero constants including π or not	M1	
	Obtain $\frac{1}{2}\tan 2x - x$ or $\pi(\frac{1}{2}\tan 2x - x)$	A1	
	Obtain $\pi\left(\frac{1}{2}\sqrt{3}-\frac{1}{6}\pi\right)$ or equivalent	A1	
	Total:	4	
7(i)	Differentiate x and y and form $\frac{dy}{dx}$	M1	
	Obtain $\frac{4t^3 - 6t^2 + 8t - 12}{3t^2 + 6}$	A1	First 2 marks may be implied by an attempt at division
	Carry out division at least as far as kt or equivalent	M1	For M1 , it must be division by a quadratic factor. Allow attempt at factorisation with same conditions as for division
	Obtain $\frac{4}{3}t$	A1	
	Obtain $\frac{4}{3}t - 2$ with complete division shown and no errors seen	A1	
	Total:	5	

Question	Answer	Marks	Guidance
7(ii)	State or imply gradient of straight line is $\frac{1}{2}$	B1	Allow B1 if $y = \frac{1}{2}x + \frac{9}{2}$ is seen
	Attempt value of t from their $\frac{dy}{dx}$ = their negative reciprocal of gradient of line	M1	
	Obtain $t = 0$ and hence $(1,5)$	A1	
	Total:	3	
8(i)	Apply product rule to find first derivative	*M1	
	Obtain $6x\ln\left(\frac{1}{6}x\right) + 3x$ or equivalent	A1	Allow unsimplified for A1
	Identify $x = 6$ at P	B1	
	Substitute their value of x at P into attempt at first derivative	DM1	dep *M
	Obtain 18	A1	
	Total:	5	

Question	Answer	Marks	Guidance
8(ii)	Equate their first derivative to zero and attempt solution of equation of form $k\ln(\frac{1}{6}x) + m = 0$	*M1	
	Obtain <i>x</i> -coordinate of form $a_1 e^{a_2}$	DM1	dep *M
	Obtain $x = 6e^{-\frac{1}{2}}$ or exact equivalent	A1	
	Substitute exact <i>x</i> -value in the form $a_1e^{a_2}$ and attempt simplification to remove ln	M1	
	Obtain $-54e^{-1}$ or exact equivalent	A1	
	Total:	5	