Question	Answer	Marks	Guidance
1	Take logarithms of both sides and apply power law to both sides	M1	Allow $y=\frac{\log 5}{4 \log 3}$ for M1 A1
	Rearrange to the form $y=\frac{\ln 5}{4 \ln 3} x$ or equivalent	A1	
	Obtain $m=0.366$	A1	
	Total:	3	
2	State or imply non-modulus inequality $(4-x)^{2} \leqslant(3-2 x)^{2}$ or corresponding equation, pair of linear equations or linear inequalities	M1	
	Attempt solution of 3-term quadratic equation, of two linear equations or of two linear inequalities	M1	
	Obtain critical values -1 and $\frac{7}{3}$	A1	SR Allow B1 for $x \leqslant-1$ only or $x \geqslant \frac{7}{3}$ only if first M1 is not given
	State answer $x \leqslant-1, x \geqslant \frac{7}{3}$	A1	Do not accept $\frac{7}{3} \leqslant x \leqslant-1$ or $-1 \geqslant x \geqslant \frac{7}{3}$ for A1
	Total:	4	

Question	Answer	Marks	Guidance
3	Integrate to obtain form $k e^{\frac{1}{2} x+3}$ where k is constant not equal to 4	M1	
	Obtain correct $8 e^{\frac{1}{2} x+3}$	A1	Allow unsimplified for A1
	Obtain $8 e^{\frac{1}{2} a+3}-8 e^{3}=835$ or equivalent	A1	
	Carry out correct process to find a from equation of form $k e^{\frac{1}{2 a+3}}=c$	M1	
	Obtain 3.65	A1	If 3.65 seen with no actual attempt at integration, award B1 if it is thought that trial and improvement with calculator has been used.
	Total:	5	
4(i)	Use iteration correctly at least once	M1	
	Obtain final answer 2.08	A1	
	Show sufficient iterations to 4 dp to justify answer or show sign change in interval (2.075, 2.085)	A1	
	Total:	3	
4(ii)	State or clearly imply equation $x=\frac{2 x^{2}+x+9}{(x+1)^{2}}$ or same equation using α	B1	
	Carry out relevant simplification	M1	
	Obtain $\sqrt[3]{9}$	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	State $R=3$	B1	Allow marks for (i) if seen in (ii)
	Use appropriate trigonometric formula to find α	M1	
	Obtain 48.19 with no errors seen	A1	
	Total:	3	
5(ii)	Carry out evaluation of $\cos ^{-1} \frac{1}{3}(=70.528 \ldots)$	M1	M1 for $\cos ^{-1}\left(\frac{1}{R}\right)$
	Obtain correct answer 118.7	A1	
	Carry out correct method to find second answer	M1	
	Obtain 337.7 and no others between 0 and 360	A1	
	Total:	4	
6(i)	State or imply correct y-values $0, \tan \frac{1}{6} \pi, \tan \frac{2}{6} \pi$	B1	Some candidates have their calculator in degree mode when working out $\tan \frac{\pi}{6}$ etc. this gives 0.00915 and 0.0183. Allow B1.
	Use correct formula, or equivalent, with $h=\frac{1}{12} \pi$ and y-values	M1	Must be convinced they have considered 3 values for y for M1
	Obtain 0.378	A1	
	Total:	3	

Question	Answer	Marks	Guidance
6(ii)	State or imply $\pi \int\left(\sec ^{2} 2 x-1\right) \mathrm{d} x$	B1	
	Integrate to obtain $k_{1} \tan 2 x+k_{2} x$, any non-zero constants including π or not	M1	
	Obtain $\frac{1}{2} \tan 2 x-x$ or $\pi\left(\frac{1}{2} \tan 2 x-x\right)$	A1	
	Obtain $\pi\left(\frac{1}{2} \sqrt{3}-\frac{1}{6} \pi\right)$ or equivalent	A1	
	Total:	4	
7(i)	Differentiate x and y and form $\frac{d y}{d x}$	M1	
	Obtain $\frac{4 t^{3}-6 t^{2}+8 t-12}{3 t^{2}+6}$	A1	First 2 marks may be implied by an attempt at division
	Carry out division at least as far as $k t$ or equivalent	M1	For M1, it must be division by a quadratic factor. Allow attempt at factorisation with same conditions as for division
	Obtain $\frac{4}{3} t$	A1	
	Obtain $\frac{4}{3} t-2$ with complete division shown and no errors seen	A1	
	Total:	5	

Question	Answer	Marks	Guidance
7(ii)	State or imply gradient of straight line is $\frac{1}{2}$	B1	Allow B1 if $y=\frac{1}{2} x+\frac{9}{2}$ is seen
	Attempt value of t from their $\frac{d y}{d x}=$ their negative reciprocal of gradient of line	M1	
	Obtain $t=0$ and hence (1,5)	A1	
	Total:	3	
8(i)	Apply product rule to find first derivative	*M1	
	Obtain $6 x \ln \left(\frac{1}{6} x\right)+3 x$ or equivalent	A1	Allow unsimplified for A1
	Identify $x=6$ at P	B1	
	Substitute their value of x at P into attempt at first derivative	DM1	dep *M
	Obtain 18	A1	
	Total:	5	

Question	Answer	Marks	Guidance
$8($ ii)	Equate their first derivative to zero and attempt solution of equation of form $k \ln \left(\frac{1}{6} x\right)+m=0$	$* \mathbf{M 1}$	
	Obtain x-coordinate of form $a_{1} e^{a_{2}}$	DM1	dep *M
	Obtain $x=6 \mathrm{e}^{-\frac{1}{2}}$ or exact equivalent	A1	
	Substitute exact $x-$ value in the form $a_{1} e^{a_{2}}$ and attempt simplification to remove \ln	M1	
	Obtain $-54 \mathrm{e}^{-1}$ or exact equivalent	A1	

