Question	Answer	Marks	Guidance
1(i)	Coefficient of $x=80(x)$	B2	Correct value must be selected for both marks. SR +80 seen in an expansion gets $\mathbf{B 1}$ or -80 gets $\mathbf{B 1}$ if selected.
	Total:	2	
1(ii)	Coefficient of $\frac{1}{x}=-40\left(\frac{1}{x}\right)$	B2	Correct value soi in (ii), if powers unsimplified only allow if selected. SR +40 soi in (ii) gets B1.
	Coefficient of $x=(1 \times$ their 80$)+(3 \times$ their -40$)=-40(x)$	M1 A1	Links the appropriate 2 terms only for M1.
	Total:	4	
2(i)	Gradient $=1.5$ Gradient of perpendicular $=-2 / 3$	B1	
	$\begin{gathered} \text { Equation of } A B \text { is } \\ \text { Or } \\ y-6=-2 / 3(x+2) \\ \end{gathered}$	M1 A1	Correct use of straight line equation with a changed gradient and $(-2,6)$, the (- (-2)) must be resolved for the A1 ISW.
			Using $y=m x+c$ gets $\mathbf{A 1}$ as soon as c is evaluated.
	Total:	3	
2(ii)	Simultaneous equations \rightarrow Midpoint (1, 4)	M1	Attempt at solution of simultaneous equations as far as $x=$, or $y=$.
	Use of midpoint or vectors $\rightarrow B(4,2)$	M1A1	Any valid method leading to x, or to y.
	Total:	3	

Question	Answer	Marks	Guidance
3(i)	LHS $=\left(\frac{1}{c}-\frac{\mathrm{s}}{\mathrm{c}}\right)^{2}$	M1	Eliminates tan by replacing with $\frac{\sin }{\cos }$ leading to a function of \sin and/or \cos only.
	$=\frac{(1-s)^{2}}{1-s^{2}}$	M1	Uses $s^{2}+\mathrm{c}^{2}=1$ leading to a function of sin only.
	$=\frac{(1-s)(1-s)}{(1-s)(1+s)}=\frac{1-\sin \theta}{1+\sin \theta}$	A1	AG. Must show use of factors for A1.
	Total:	3	
3(ii)	Uses part (i) $\rightarrow 2-2 s=1+s$		
	$\rightarrow s=1 / 3$	M1	Uses part (i) to obtain $s=k$
	$\theta=19.5^{\circ}$ or 160.5°	A1A1 FT	FT from error in 19.5° Allow $0.340^{c}\left(0.3398^{c}\right) \& 2.80(2)$ or $0.108 \pi^{\mathrm{c}} \& 0.892 \pi^{\mathrm{c}}$ for $\mathbf{A 1}$ only. Extra answers in the range lose the second $\mathbf{A 1}$ if gained for 160.5°.
	Total:	3	
4(i)	$(A B)=2 r \sin \theta\left(\text { or } r \sqrt{2-2 \cos 2 \theta} \text { or } \frac{r \sin 2 \theta}{\sin \left(\frac{\pi}{2}-\theta\right)}\right)$	B1	Allow unsimplifed throughout eg r $\mathrm{r}, \frac{2 \theta}{2}$ etc
	$(\operatorname{Arc} A B)=2 \mathrm{r} \theta$	B1	
	$(P=) 2 r+2 \mathrm{r} \theta+2 r \sin \theta\left(\text { or } r \sqrt{2-2 \cos 2 \theta} \text { or } \frac{r \sin 2 \theta}{\sin \left(\frac{\pi}{2}-\theta\right)}\right)$	B1	
	Total:	3	

Question	Answer	Marks	Guidance
4(ii)	Area sector $A O B=\left(1 / 2 r^{2} 2 \theta\right) \frac{25 \pi}{6}$ or 13.1	B1	Use of segment formula gives 2.26 B1B1
	Area triangle $A O B=\left(1 / 2 \times 2 r \sin \theta \times r \cos \theta\right.$ or $\left.1 / 2 \times r^{2} \sin 2 \theta\right)$ $\frac{25 \sqrt{3}}{4}$ or 10.8	B1	
	Area rectangle $A B C D=(r \times 2 r \sin \theta) 25$	B1	
	$($ Area $=)$ Either $25-(25 \pi / 6-25 \sqrt{ } 3 / 4)$ or 22.7	B1	Correct final answer gets B4.
	Total:	4	
5(i)	Crosses x-axis at (6,0)	B1	$x=6$ is sufficient.
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(0+)-12(2-x)^{-2} \times(-1)$	B2,1,0	-1 for each incorrect term of the three or addition of +C .
	Tangent $y=3 / 4(x-6)$ or $4 y=3 x-18$	M1 A1	Must use $\mathrm{d} y / \mathrm{d} x, x=$ their 6 but not $x=0$ (which gives $m=3$), and correct form of line equation.
			Using $y=m x+c$ gets $\mathbf{A 1}$ as soon as \mathbf{c} is evaluated.
	Total:	5	
5(ii)	If $x=4, \mathrm{~d} y / \mathrm{d} x=3$		
	$\frac{\mathrm{d} y}{\mathrm{~d} t}=3 \times 0.04=0.12$	M1 A1FT	M1 for ("their m" from $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $x=4$) $\times 0.04$. Be aware: use of $x=0$ gives the correct answer but gets M0.
	Total:	2	

Question	Answer	Marks	Guidance
6	$\mathrm{Vol}=\pi \int(5-x)^{2} \mathrm{~d} x-\pi \int \frac{16}{x^{2}} \mathrm{~d} x$	M1*	Use of volume formula at least once, condone omission of π and limits and $\mathrm{d} x$.
		DM1	Subtracting volumes somewhere must be after squaring.
	$\int(5-x)^{2} \mathrm{~d} x=\frac{(5-x)^{3}}{3} \div-1$	B1 B1	B1 Without $\div(-1)$. $\mathbf{B} 1$ for $\div(-1)$
	(or $25 x-10 x^{2} / 2+1 / 3 x^{3}$)	(B2,1,0)	-1 for each incorrect term
	$\int \frac{16}{x^{2}} \mathrm{~d} x=-\frac{16}{x}$	B1	
	Use of limits 1 and 4 in an integrated expression and subtracted.	DM1	Must have used" y^{2} " ${ }^{\text {at }}$ at least once. Need to see values substituted.
	$\rightarrow 9 \pi$ or 28.3	A1	
	Total:	7	
7(a)	$\left(S_{n}=\right) \frac{n}{2}[32+(n-1) 8]$ and 20000	M1	M1 correct formula used with d from $16+d=24$
		A1	A1 for correct expression linked to 20000.
	$\rightarrow n^{2}+3 n-5000(<,=,>0)$	DM1	Simplification to a three term quadratic.
	$\rightarrow(n=69.2) \rightarrow 70$ terms needed.	A1	Condone use of 20001 throughout. Correct answer from trial and improvement gets 4/4.
	Total:	4	

Question	Answer	Marks	Guidance
7(b)	$a=6, \frac{a}{1-r}=18 \rightarrow r=2 / 3$	M1A1	Correct $S \infty 0$ formula used to find r.
	New progression $a=36, r=\frac{4}{9}$ oe	M1	Obtain new values for a and r by any valid method.
	$\text { New } S \infty=\frac{36}{1-\frac{4}{9}} \rightarrow 64.8 \text { or } \frac{324}{5} \text { oe }$	A1	(Be aware that $r=-2 / 3$ leads to 64.8 but can only score M marks)
	Total:	4	
8(i)	Uses scalar product correctly: $3 \times 6+2 \times 6+(-4) \times 3=18$	M1	Use of dot product with $\overrightarrow{O A}$ or $\overrightarrow{A O} \& \overrightarrow{O B}$ or $\overrightarrow{B O}$ only.
	$\|\overrightarrow{O A}\|=\sqrt{29},\|\overrightarrow{O B}\|=9$	M1	Correct method for any one of $\|\overrightarrow{O A}\|,\|\overrightarrow{A O}\|,\|\overrightarrow{O B}\|$ or $\|\overrightarrow{B O}\|$.
	$\sqrt{29} \times 9 \times \cos A O B=18$	M1	All linked correctly.
	$\rightarrow A O B=68.2^{\circ}$ or 1.19°	A1	Multiples of π are acceptable (e.g. $0.379 \pi^{\text {c }}$)
	Total:	4	
8(ii)	$\overrightarrow{A B}=3 \mathbf{i}+4 \mathbf{j}+(3+2 p) \mathbf{k}$	*M1	For use of $\overrightarrow{O B}-\overrightarrow{O A}$, allow with $\mathrm{p}=2$
	Comparing "j"	DM1	For comparing, $\overrightarrow{O C}$ must contain $p \& q$. Can be implied by $\overrightarrow{A B}=2 \overrightarrow{O C}$.
	$\rightarrow p=2^{1 / 2}$ and $q=4$	A1 A1	Accuracy marks only available if $\overrightarrow{A B}$ is correct.
	Total:	4	

Question	Answer	Marks	Guidance
9(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x^{-1 / 2}-2$	B1	Accept unsimplified.
	$=0$ when $\sqrt{x}=2$		
	$x=4, y=8$	B1B1	
	Total:	3	
9(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-2 x^{-\frac{3}{2}}$	B1FT	FT providing -ve power of x
	$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{4}\right) \rightarrow$ Maximum	B1	Correct $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and $x=4$ in (i) are required. Followed by" <0 or negative" is sufficient" but $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ must be correct if evaluated.
	Total:	2	
9(iii)	EITHER: Recognises a quadratic in \sqrt{x}	(M1	$\operatorname{Eg} \sqrt{x}=u \rightarrow 2 u^{2}-8 u+6=0$
	1 and 3 as solutions to this equation	A1	
	$\rightarrow x=9, x=1$.	A1)	

Question	Answer	Marks	Guidance
	OR: Rearranges then squares	(M1	\sqrt{x} needs to be isolated before squaring both sides.
	$\rightarrow x^{2}-10 x+9=0$ oe	A1	
	$\rightarrow x=9, x=1$.	A1)	Both correct by trial and improvement gets $3 / 3$
	Total:	3	
9(iv)	$k>8$	B1	
	Total:	1	
10(i)	$3 \tan \left(\frac{1}{2} x\right)=-2 \rightarrow \tan \left(\frac{1}{2} x\right)=-2 / 3$	M1	Attempt to obtain $\tan \left(\frac{1}{2} x\right)=k$ from $3 \tan \left(\frac{1}{2} x\right)+2=0$
	$1 / 2 x=-0.6(-0.588) \rightarrow x=-1.2$	M1 A1	$\tan ^{-1} k$. Seeing $1 / 2 x=-33.69^{\circ}$ or $x=-67.4^{\circ}$ implies M1M1.
			Extra answers between $-1.57 \& 1.57$ lose the A1. Multiples of π are acceptable (eg - 0.374π)
	Total:	3	
10(ii)	$\frac{y+2}{3}=\tan \left(\frac{1}{2} x\right)$	M1	Attempt at isolating $\tan (1 / 2 x)$
	$\rightarrow \mathrm{f}^{-1}(x)=2 \tan ^{-1}\left(\frac{x+2}{3}\right)$	M1 A1	Inverse tan followed by $\times 2$. Must be function of x for A1.
	-5,1	B1 B1	Values stated B1 for -5, B1 for 1.
	Total:	5	

Question	Answer	Marks	Guidance
10(iii)		B1 B1 B1	A tan graph through the first, third and fourth quadrants. (B1) An invtan graph through the first, second and third quadrants.(B1) Two curves clearly symmetrical about $y=x$ either by sight or by exact end points. Line not required. Approximately in correct domain and range. (Not intersecting.) (B1) Labels on axes not required.
	Total:	3	

