97 May/June 2017 12

Question	Answer	Marks	Guidance
1(i)	Coefficient of $x = 80(x)$	B2	Correct value must be selected for both marks. SR +80 seen in an expansion gets B1 or -80 gets B1 <u>if selected.</u>
	Total:	2	
1(ii)	Coefficient of $\frac{1}{x} = -40\left(\frac{1}{x}\right)$	B2	Correct value soi in (ii), if powers unsimplified only allow if selected. SR +40 soi in (ii) gets B1 .
	Coefficient of $x = (1 \times \text{their } 80) + (3 \times \text{their} - 40) = -40(x)$	M1 A1	Links the appropriate 2 terms only for M1 .
	Total:	4	
2(i)	Gradient = 1.5 Gradient of perpendicular = $-\frac{2}{3}$	B 1	
	Equation of AB is $y-6 = -\frac{2}{3}(x+2)$ Or $3y+2x=14$ oe	M1 A1	Correct use of straight line equation with a changed gradient and $(-2, 6)$, the $(-(-2))$ must be resolved for the A1 ISW.
			Using $y = mx + c$ gets A1 as soon as c is evaluated.
	Total:	3	
2(ii)	Simultaneous equations \rightarrow Midpoint (1, 4)	M1	Attempt at solution of simultaneous equations as far as $x =$, or $y =$.
	Use of midpoint or vectors $\rightarrow B(4, 2)$	M1A1	Any valid method leading to <i>x</i> , or to <i>y</i> .
	Total:	3	

	FUDLIGIILD				
Question	Answer	Marks	Guidance		
3(i)	$LHS = \left(\frac{1}{c} - \frac{s}{c}\right)^2$	M1	Eliminates tan by replacing with $\frac{\sin}{\cos}$ leading to a function of sin and/or cos		
			only.		
	$=\frac{\left(1-s\right)^2}{1-s^2}$	M1	Uses $s^2 + c^2 = 1$ leading to a function of sin only.		
	$=\frac{(1-s)(1-s)}{(1-s)(1+s)}=\frac{1-\sin\theta}{1+\sin\theta}$	A1	AG. Must show use of factors for A1.		
	Total:	3			
3(ii)	Uses part (i) $\rightarrow 2 - 2s = 1 + s$				
	$\rightarrow S = \frac{1}{3}$	M1	Uses part (i) to obtain $s = k$		
	$\theta = 19.5^{\circ} \text{ or } 160.5^{\circ}$	A1A1 FT	FT from error in 19.5° Allow 0.340° (0.3398°) & 2.80(2) or $0.108\pi^{\circ}$ & $0.892\pi^{\circ}$ for A1 only. Extra answers in the range lose the second A1 if gained for 160.5°.		
	Total:	3			
4(i)	$(AB) = 2r\sin\theta \text{ (or } r\sqrt{2 - 2\cos2\theta} \text{ or } \frac{r\sin2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)})$	B1	Allow unsimplifed throughout eg r + r, $\frac{2\theta}{2}$ etc		
	$(\operatorname{Arc} AB) = 2r\theta$	B 1			
	$(P =) 2r + 2r\theta + 2r\sin\theta \text{ (or } r\sqrt{2 - 2\cos 2\theta} \text{ or } \frac{r\sin 2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)})$	B1			
	Total:	3			

97 May/June 2017 12

Question	Answer	Marks	Guidance
4(ii)	Area sector $AOB = (\frac{1}{2}r^2 2\theta) \frac{25\pi}{6}$ or 13.1	B1	Use of segment formula gives 2.26 B1B1
	Area triangle $AOB = (\frac{1}{2} \times 2r\sin\theta \times r\cos\theta \text{ or } \frac{1}{2} \times r^2 \sin 2\theta)$ $\frac{25\sqrt{3}}{4} \text{ or } 10.8$	B1	
	Area rectangle $ABCD = (r \times 2r\sin\theta) 25$	B1	
	(Area =) Either 25 – $(25\pi/6 - 25\sqrt{3}/4)$ or 22.7	B1	Correct final answer gets B4 .
	Total:	4	
5(i)	Crosses <i>x</i> -axis at (6, 0)	B 1	x = 6 is sufficient.
	$\frac{dy}{dx} = (0+) - 12 (2-x)^{-2} \times (-1)$	B2,1,0	-1 for each incorrect term of the three or addition of + C.
	Tangent $y = \frac{3}{4}(x-6)$ or $4y = 3x - 18$	M1 A1	Must use dy/dx , $x =$ their 6 but not $x = 0$ (which gives $m = 3$), and correct form of line equation.
			Using $y = mx + c$ gets A1 as soon as c is evaluated.
	Total:	5	
5(ii)	If $x = 4$, $dy/dx = 3$		
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 3 \times 0.04 = 0.12$	M1 A1FT	M1 for ("their m" from $\frac{dy}{dx}$ and $x = 4$) × 0.04.
			Be aware: use of $x = 0$ gives the correct answer but gets M0 .
	Total:	2	

9	7 Ma j	y/June	2017	12

Question	Answer	Marks	Guidance
6	Vol = $\pi \int (5-x)^2 dx - \pi \int \frac{16}{x^2} dx$	M1*	Use of volume formula at least once, condone omission of π and limits and dx .
		DM1	Subtracting volumes somewhere must be <u>after</u> squaring.
	$\int (5-x)^2 dx = \frac{(5-x)^3}{3} \div -1$	B1 B1	B1 Without ÷ (−1). B1 for ÷(−1)
	$(or 25x - 10x^2/2 + \frac{1}{3}x^3)$	(B2,1,0)	-1 for each incorrect term
	$\int \frac{16}{x^2} \mathrm{d}x = -\frac{16}{x}$	B1	
	Use of limits 1 and 4 in an integrated expression and subtracted.	DM1	Must have used y^{2} at least once. Need to see values substituted.
	$\rightarrow 9\pi \text{ or } 28.3$	A1	
	Total:	7	
7(a)	$(S_n =) \frac{n}{2} [32 + (n-1)8]$ and 20000	M1	M1 correct formula used with d from $16 + d = 24$
		A1	A1 for correct expression linked to 20000.
	$\rightarrow n^2 + 3n - 5000 (<, =, > 0)$	DM1	Simplification to a three term quadratic.
	\rightarrow (<i>n</i> = 69.2) \rightarrow 70 terms needed.	A1	Condone use of 20001 throughout. Correct answer from trial and improvement gets 4/4.
	Total:	4	

9709/12

97 May/June 2017 12

Question	Answer	Marks	Guidance
7(b)	$a = 6, \frac{a}{1-r} = 18 \rightarrow r = \frac{2}{3}$	M1A1	Correct $S\infty$ formula used to find r .
	New progression $a = 36$, $r = \frac{4}{9}$ oe	M1	Obtain new values for <i>a</i> and <i>r</i> by any valid method.
	New $S\infty = \frac{36}{1 - \frac{4}{9}} \to 64.8 \text{ or } \frac{324}{5} \text{ oe}$	A1	(Be aware that $r = -\frac{2}{3}$ leads to 64.8 but can only score M marks)
	Total:	4	
8(i)	Uses scalar product correctly: $3 \times 6 + 2 \times 6 + (-4) \times 3 = 18$	M1	Use of dot product with \overrightarrow{OA} or \overrightarrow{AO} & \overrightarrow{OB} or \overrightarrow{BO} only.
	$\overline{ OA } = \sqrt{29}, \ \overline{ OB } = 9$	M1	Correct method for any one of $ \overrightarrow{OA} $, $ \overrightarrow{AO} $, $ \overrightarrow{OB} $ or $ \overrightarrow{BO} $.
	$\sqrt{29} \times 9 \times \cos AOB = 18$	M1	All linked correctly.
	$\rightarrow AOB = 68.2^{\circ} \text{ or } 1.19^{\circ}$	A1	Multiples of π are acceptable (e.g. 0.379 π°)
	Total:	4	
8(ii)	$\overrightarrow{AB} = 3\mathbf{i} + 4\mathbf{j} + (3+2p)\mathbf{k}$	* M 1	For use of $\overrightarrow{OB} - \overrightarrow{OA}$, allow with $p = 2$
	Comparing " j "	DM1	For comparing, \overrightarrow{OC} must contain $p \& q$. Can be implied by $\overrightarrow{AB} = 2 \overrightarrow{OC}$.
	$\rightarrow p = 2^{1/2}$ and $q = 4$	A1 A1	Accuracy marks only available if \overrightarrow{AB} is correct.
	Total:	4	

Question	Answer	Marks	Guidance
9(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} - 2$	B1	Accept unsimplified.
	$= 0$ when $\sqrt{x} = 2$		
	x = 4, y = 8	B1B1	
	Total:	3	
9(ii)	$\frac{d^2 y}{dx^2} = -2x^{-\frac{3}{2}}$	B1FT	FT providing –ve power of x
	$\left(\frac{d^2 y}{dx^2} = -\frac{1}{4}\right) \rightarrow Maximum$	B1	Correct $\frac{d^2 y}{dx^2}$ and x=4 in (i) are required.
			Followed by "< 0 or negative" is sufficient" but $\frac{d^2y}{dx^2}$ must be correct if evaluated.
	Total:	2	
9(iii)	EITHER: Recognises a quadratic in \sqrt{x}	(M1	$Eg \sqrt{x} = u \longrightarrow 2u^2 - 8u + 6 = 0$
	1 and 3 as solutions to this equation	A1	
	$\rightarrow x = 9, x = 1.$	A1)	

_{9 7} May/June 2017	12

Question	Answer	Marks	Guidance
	<i>OR:</i> Rearranges then squares	(M1	\sqrt{x} needs to be isolated before squaring both sides.
	$\rightarrow x^2 - 10x + 9 = 0$ oe	A1	
	$\rightarrow x = 9, x = 1.$	A1)	Both correct by trial and improvement gets 3/3
	Total:	3	
9(iv)	<i>k</i> > 8	B1	
	Total:	1	
10(i)	$3\tan\left(\frac{1}{2}x\right) = -2 \longrightarrow \tan\left(\frac{1}{2}x\right) = -\frac{2}{3}$	M1	Attempt to obtain $tan\left(\frac{1}{2}x\right) = k$ from $3tan\left(\frac{1}{2}x\right) + 2 = 0$
	$\frac{1}{2}x = -0.6 \ (-0.588) \rightarrow x = -1.2$	M1 A1	$\tan^{-1} k$. Seeing $\frac{1}{2}x = -33.69^{\circ}$ or $x = -67.4^{\circ}$ implies M1M1 .
			Extra answers between -1.57 &1.57 lose the A1. Multiples of π are acceptable (eg -0.374π)
	Total:	3	
10(ii)	$\frac{y+2}{3} = \tan\left(\frac{1}{2}x\right)$	M1	Attempt at isolating $tan(\frac{1}{2}x)$
	$\rightarrow f^{-1}(x) = 2\tan^{-1}\left(\frac{x+2}{3}\right)$	M1 A1	Inverse tan followed by \times 2. Must be function of <i>x</i> for A1.
	-5,1	B1 B1	Values stated B1 for -5, B1 for 1.
	Total:	5	

9709/12

97 May	/June	2017	12

Question	Answer	Marks	Guidance
10(iii)		B1 B1 B1	A tan graph through the first, third and fourth quadrants. (B1) An invtan graph through the first, second and third quadrants.(B1) Two curves clearly symmetrical about $y = x$ either by sight or by exact end points. Line not required. Approximately in correct domain and range. (Not intersecting.) (B1) Labels on axes not required.
	Total:	3	