

Question	Answer	Marks	Guidance
1	$(3-2x)^6$		
	Coeff of $x^2 = 3^4 \times (-2)^2 \times {}_6C_2 = a$	B3,2,1	Mark unsimplified forms. –1 each independent error but powers
	Coeff of $x^3 = 3^3 \times (-2)^3 \times {}_6C_3 = b$		must be correct. Ignore any ' x ' present.
	$\frac{a}{a} = -\frac{9}{2}$	B1	OE. Negative sign must appear before or in the numerator
	<i>b</i> 8		
	Total:	4	
2	$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix} \text{ and } \overrightarrow{OB} = \begin{pmatrix} 2 \\ -6 \\ -7 \end{pmatrix}$		
2(i)	Angle $AOB = 90^\circ \rightarrow 6 + 36 - 7p = 0$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2 = 0$ or Pythagoras
	$\rightarrow p = 6$	A1	
	Total:	2	

9709/11

97**May/June 2017**11

Question	Answer	Marks	Guidance
2(ii)	$\overrightarrow{OC} = \frac{2}{3} \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix}$	B1 FT	CAO FT on their value of <i>p</i>
	$\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = \begin{pmatrix} 0\\2\\11 \end{pmatrix}; \text{ magnitude} = \sqrt{125}$	M1 M1	Use of $\mathbf{c} - \mathbf{b}$. Allow magnitude of $\mathbf{b} + \mathbf{c}$ or $\mathbf{b} - \mathbf{c}$ Allow first M1 in terms of p
	Unit vector = $\frac{1}{\sqrt{125}} \begin{pmatrix} 0\\2\\11 \end{pmatrix}$	A1	OE Allow \pm and decimal equivalent
3(i)	$\frac{1+\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta} = \frac{2}{\sin\theta}.$		
	$\frac{(1+c)^2 + s^2}{s(1+c)} = \frac{1+2c+c^2+s^2}{s(1+c)}$	M1	Correct use of fractions
	$=\frac{2+2c}{s(1+c)}=\frac{2(1+c)}{s(1+c)}\rightarrow\frac{2}{s}$	M1 A1	Use of trig identity, A1 needs evidence of cancelling
	Total:	3	
3(ii)	$\frac{2}{s} = \frac{3}{c} \to t = \frac{2}{3}$	M1	Use part (i) and $t = s \div c$, may restart from given equation
	$\rightarrow \theta = 33.7^{\circ} \text{ or } 213.7^{\circ}$	A1 A1FT	FT for 180° + 1st answer. 2nd A1 lost for extra solns in range
	Total:	3	

Question	Answer	Marks	Guidance
4(a)	$a = 32, a + 4d = 22, \rightarrow d = -2.5$	B 1	
	$a + (n-1)d = -28 \longrightarrow n = 25$	B 1	
	$S_{25} = \frac{25}{2} (64 - 2.5 \times 24) = 50$	M1 A1	M1 for correct formula with $n = 24$ or $n = 25$
	Total:	4	
4(b)	a = 2000, r = 1.025	B1	$r = 1 + 2.5\%$ ok if used correctly in S_n formula
	$S_{10} = 2000(\frac{1.025^{10} - 1}{1.025 - 1}) = 22400$ or a value which rounds to this	M1 A1	M1 for correct formula with $n = 9$ or $n = 10$ and their a and r
			SR: correct answer only for $n = 10$ B3, for $n = 9$, B1 (£19 900)
	Total:	3	

Question	Answer	Marks	Guidance
5	$y = 2\cos x$		
5(i)		B 1	One whole cycle – starts and finishes at –ve value
		DB1	Smooth curve, flattens at ends and middle. Shows (0, 2).
	Total:	2	
5(ii)	$P(\frac{\pi}{3}, 1) Q(\pi, -2)$		
	$\rightarrow PQ^2 = \left(\frac{2\pi}{3}\right)^2 + 3^2 \rightarrow PQ = 3.7$	M1 A1	Pythagoras (on their coordinates) must be correct, OE.
	Total:	2	

9709/11

97 May/June 2017 11

Question	Answer	Marks	Guidance
5(iii)	Eqn of PQ $y-1 = -\frac{9}{2\pi}\left(x-\frac{\pi}{3}\right)$	M1	Correct form of line equation or sim equations from their $P \& Q$
	If $y = 0 \rightarrow h = \frac{5\pi}{9}$	A1	AG, condone $x = \frac{5\pi}{9}$
	If $x = 0 \rightarrow k = \frac{5}{2}$,	A1	SR: non-exact solutions A1 for both
	Total:	3	
6(i)	Volume = $\left(\frac{1}{2}\right) x^2 \frac{\sqrt{3}}{2} h = 2000 \to h = \frac{8000}{\sqrt{3x^2}}$	M1	Use of (area of triangle, with attempt at ht) $\times h = 2000$, $h = f(x)$
	$A = 3xh + (2) \times \left(\frac{1}{2}\right) \times x^2 \times \frac{\sqrt{3}}{2}$	M1	Uses 3 rectangles and at least one triangle
	Sub for $h \to A = \frac{\sqrt{3}}{2}x^2 + \frac{24000}{\sqrt{3}}x^{-1}$	A1	AG
	Total:	3	
6(ii)	$\frac{dA}{dx} = \frac{\sqrt{3}}{2} 2x - \frac{24000}{\sqrt{3}} x^{-2}$	B1	CAO, allow decimal equivalent
	$= 0 \text{ when } x^3 = 8000 \rightarrow x = 20$	M1 A1	Sets their $\frac{dA}{dx}$ to 0 and attempt to solve for x
	Total:	3	

97 May/June 2017 11

Question	Answer	Marks	Guidance
6(iii)	$\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = \frac{\sqrt{3}}{2} 2 + \frac{48000}{\sqrt{3}} x^{-3} > 0$	M1	Any valid method, ignore value of $\frac{d^2A}{dx^2}$ providing it is positive
	\rightarrow Minimum	A1 FT	FT on their <i>x</i> providing it is positive
	Total:	2	
7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 7 - x^2 - 6x$		
7(i)	$y = 7x - \frac{x^3}{3} - \frac{6x^2}{2} \ (+c)$	B1	CAO
	Uses $(3, -10) \rightarrow c = 5$	M1 A1	Uses the given point to find <i>c</i>
	Total:	3	
7(ii)	$7 - x^2 - 6x = 16 - (x + 3)^2$	B1 B1	B1 $a = 16$, B1 $b = 3$.
	Total:	2	
7(iii)	$16 - (x+3)^2 > 0 \rightarrow (x+3)^2 < 16$, and solve	M1	or factors $(x + 7)(x - 1)$
	End-points $x = 1$ or -7	A1	
	$\rightarrow -7 < x < 1$	A1	needs <, not \leq . (SR <i>x</i> < 1 only, or <i>x</i> > -7 only B1 i.e. 1/3)
	Total:	3	

^{9709/11}

Question	Answer	Marks	Guidance
8(i)	Letting M be midpoint of AB		
	$OM = 8$ (Pythagoras) $\rightarrow XM = 2$	B1	(could find $\sqrt{40}$ and use \sin^{-1} or \cos^{-1})
	$\tan AXM = \frac{6}{2} AXB = 2\tan^{-1}3 = 2.498$	M1 A1	AG Needs \times 2 and correct trig for M1
	(Alternative 1: $\sin AOM = \frac{6}{10}$, $AOM = 0.6435$, $AXB = \pi - 0.6435$)		(Alternative 1: Use of isosceles triangles, B1 for AOM, M1,A1 for completion)
			(Alternative 2: Use of circle theorem, B1 for AOB, M1 , A1 for completion)
	Total:	3	
8(ii)	$AX = \sqrt{6^2 + 2^2} = \sqrt{40}$	B1	CAO, could be gained in part (i) or part (iii)
	Arc $AYB = r\theta = \sqrt{40} \times 2.498$	M1	Allow for incorrect $\sqrt{40}$ (not $r = 6 or 12 or 10$)
	Perimeter = $12 + arc = 27.8 cm$	A1	
	Total:	3	
8(iii)	area of sector $AXBY = \frac{1}{2} \times (\sqrt{40})^2 \times 2.498$	M1	Use of $\frac{1}{2}r^2\theta$ with their r, (not $r = 6 \text{ or } r = 10$)
	Area of triangle $AXB = \frac{1}{2} \times 12 \times 2$, Subtract these $\rightarrow 38.0 \text{ cm}^2$	M1 A1	Use of $\frac{1}{2bh}$ and subtraction. Could gain M1 with $r = 10$.
	Total:	3	

Question	Answer	Marks	Guidance
9	$f: x \mapsto \frac{2}{3-2x} g: x \mapsto 4x + a,$		
9(i)	$y = \frac{2}{3 - 2x} \rightarrow y(3 - 2x) = 2 \rightarrow 3 - 2x = \frac{2}{y}$	M1	Correct first 2 steps
	$\rightarrow 2x = 3 - \frac{2}{y} \rightarrow f^{-1}(x) = \frac{3}{2} - \frac{1}{x}$	M1 A1	Correct order of operations, any correct form with $f(x)$ or $y =$
	Total:	3	
9(ii)	$gf(-1) = 3 f(-1) = \frac{2}{5}$	M1	Correct first step
	$\frac{8}{5} + a = 3 \implies a = \frac{7}{5}$	M1 A1	Forms an equation in a and finds a , OE
			(or $\frac{8}{3-2x} + a = 3$, M1 Sub and solves M1, A1)
	Total:	3	
9(iii)	$g^{-1}(x) = \frac{x-a}{4} = f^{-1}(x)$	M1	Finding $g^{-1}(x)$ and equating to their $f^{-1}(x)$ even if $a = 7/5$
	$\rightarrow x^2 - x(a+6) + 4(=0)$	M1	Use of $b^2 - 4ac$ on a quadratic with a in a coefficient
	Solving $(a+6)^2 = 16 \text{ or } a^2 + 12a + 20 (= 0)$	M1	Solution of a 3 term quadratic
	$\rightarrow a = -2 \text{ or } -10$	A1	
	Total:	4	

97**May/June 2017**_11

Question	Answer	Marks	Guidance
10(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4}{\left(5 - 3x\right)^2} \times (-3)$	B1 B1	B1 without ×(-3) B1 For ×(-3)
	Gradient of tangent = 3, Gradient of normal $-\frac{1}{3}$	*M1	Use of $m_1m_2 = -1$ after calculus
	\rightarrow eqn: $y-2=-\frac{1}{3}(x-1)$	DM1	Correct form of equation, with (1, their y), not (1,0)
	$\rightarrow y = -\frac{1}{3}x + \frac{7}{3}$	A1	This mark needs to have come from $y = 2$, y must be subject
	Total:	5	
10(ii)	$Vol = \pi \int_{0}^{1} \frac{16}{(5-3x)^2} dx$	M1	Use of $V = \pi \int y^2 dx$ with an attempt at integration
	$\pi \left[\frac{-16}{(5-3x)} \div -3 \right]$	A1 A1	A1 without(÷ -3), A1 for (÷ -3)
	$= \left(\pi \left(\frac{16}{6} - \frac{16}{15}\right)\right) = \frac{8\pi}{5} \text{ (if limits switched must show - to +)}$	M1 A1	Use of both correct limits M1
	Total:	5	