Question	Answer		Marks	Guidance
1	$(3-2 x)^{6}$			
	Coeff of $x^{2}=3^{4} \times(-2)^{2} \times{ }_{6} C_{2}=a$ Coeff of $x^{3}=3^{3} \times(-2)^{3} \times{ }_{6} C_{3}=b$		B3,2,1	Mark unsimplified forms. - 1 each independent error but powers must be correct. Ignore any ' x ' present.
	$\frac{a}{b}=-\frac{9}{8}$		B1	OE. Negative sign must appear before or in the numerator
		Total:	4	
2	$\overrightarrow{O A}=\left(\begin{array}{c}3 \\ -6 \\ p\end{array}\right)$ and $\overrightarrow{O B}=\left(\begin{array}{c}2 \\ -6 \\ -7\end{array}\right)$			
2(i)	Angle $A O B=90^{\circ} \rightarrow 6+36-7 p=0$		M1	Use of $x_{1} \mathrm{X}_{2}+y_{1} y_{2}+z_{1} z_{2}=0$ or Pythagoras
	$\rightarrow p=6$		A1	
		Total:	2	

Question	Answer		Marks	Guidance
2(ii)	$\overrightarrow{O C}=\frac{2}{3}\left(\begin{array}{c}3 \\ -6 \\ p\end{array}\right)=\left(\begin{array}{c}2 \\ -4 \\ 4\end{array}\right)$		B1 FT	CAO FT on their value of p
	$\overrightarrow{B C}=\mathbf{c}-\mathbf{b}=\left(\begin{array}{c}0 \\ 2 \\ 11\end{array}\right) ;$ magnitude $=\sqrt{ } 125$		M1 M1	Use of $\mathbf{c}-\mathbf{b}$. Allow magnitude of $\mathbf{b}+\mathbf{c}$ or $\mathbf{b}-\mathbf{c}$ Allow first M1 in terms of p
	Unit vector $=\frac{1}{\sqrt{125}}\left(\begin{array}{c}0 \\ 2 \\ 11\end{array}\right)$		A1	OE Allow \pm and decimal equivalent
3(i)	$\frac{1+\cos \theta}{\sin \theta}+\frac{\sin \theta}{1+\cos \theta} \equiv \frac{2}{\sin \theta} .$			
	$\frac{(1+c)^{2}+s^{2}}{s(1+c)}=\frac{1+2 c+c^{2}+s^{2}}{s(1+c)}$		M1	Correct use of fractions
	$=\frac{2+2 c}{s(1+c)}=\frac{2(1+c)}{s(1+c)} \rightarrow \frac{2}{s}$		M1 A1	Use of trig identity, A1 needs evidence of cancelling
		Total:	3	
3(ii)	$\frac{2}{s}=\frac{3}{c} \rightarrow t=\frac{2}{3}$		M1	Use part (i) and $t=s \div c$, may restart from given equation
	$\rightarrow \theta=33.7^{\circ}$ or 213.7°		A1 A1FT	FT for $180^{\circ}+1$ st answer. 2 nd A1 lost for extra solns in range
		Total:	3	

Question	Answer	Marks	Guidance
4(a)	$a=32, a+4 d=22, \rightarrow d=-2.5$	B1	
	$a+(n-1) d=-28 \rightarrow n=25$	B1	
	$S_{25}=\frac{25}{2}(64-2.5 \times 24)=50$	M1 A1	M1 for correct formula with $n=24$ or $n=25$
	Total:	4	
4(b)	$a=2000, r=1.025$	B1	$r=1+2.5 \%$ ok if used correctly in S_{n} formula
	$S_{10}=2000\left(\frac{1.025^{10}-1}{1.025-1}\right)=22400$ or a value which rounds to this	M1 A1	M1 for correct formula with $n=9$ or $n=10$ and their a and r
			SR: correct answer only for $n=10 \mathbf{B 3}$, for $n=9, \mathbf{B 1}(£ 19$ 900)
	Total:	3	

Question	Answer	Marks	Guidance
5	$y=2 \cos x$		
5(i)		B1	One whole cycle - starts and finishes at -ve value
		DB1	Smooth curve, flattens at ends and middle. Shows (0, 2).
	Total:	2	
5(ii)	$P\left(\frac{\pi}{3}, 1\right) Q(\pi,-2)$		
	$\rightarrow P Q^{2}=\left(\frac{2 \pi}{3}\right)^{2}+3^{2} \rightarrow P Q=3.7$	M1 A1	Pythagoras (on their coordinates) must be correct, OE.
	Total:	2	

Question	Answer	Marks	Guidance
5(iii)	Eqn of $P Q y-1=-\frac{9}{2 \pi}\left(x-\frac{\pi}{3}\right)$	M1	Correct form of line equation or sim equations from their P \& Q
	If $y=0 \rightarrow h=\frac{5 \pi}{9}$	A1	$\text { AG, condone } x=\frac{5 \pi}{9}$
	If $x=0 \rightarrow k=\frac{5}{2}$,	A1	SR: non-exact solutions A1 for both
	Total:	3	
6(i)	$\text { Volume }=\left(\frac{1}{2}\right) x^{2} \frac{\sqrt{3}}{2} h=2000 \rightarrow h=\frac{8000}{\sqrt{3 x^{2}}}$	M1	Use of (area of triangle, with attempt at ht) $\times h=2000, h=\mathrm{f}(x)$
	$A=3 x h+(2) \times\left(\frac{1}{2}\right) \times x^{2} \times \frac{\sqrt{3}}{2}$	M1	Uses 3 rectangles and at least one triangle
	Sub for $h \rightarrow A=\frac{\sqrt{ } 3}{2} x^{2}+\frac{24000}{\sqrt{3}} x^{-1}$	A1	AG
	Total:	3	
6(ii)	$\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{\sqrt{3}}{2} 2 x-\frac{24000}{\sqrt{3}} x^{-2}$	B1	CAO, allow decimal equivalent
	$=0$ when $x^{3}=8000 \rightarrow x=20$	M1 A1	Sets their $\frac{\mathrm{d} A}{\mathrm{~d} x}$ to 0 and attempt to solve for x
	Total:	3	

Question	Answer		Marks	Guidance
6(iii)	$\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}=\frac{\sqrt{3}}{2} 2+\frac{48000}{\sqrt{3}} x^{-3}>0$		M1	Any valid method, ignore value of $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}$ providing it is positive
	\rightarrow Minimum		A1 FT	FT on their x providing it is positive
		Total:	2	
7	$\frac{\mathrm{d} y}{\mathrm{~d} x}=7-x^{2}-6 x$			
7(i)	$y=7 x-\frac{x^{3}}{3}-\frac{6 x^{2}}{2}(+c)$		B1	CAO
	Uses $(3,-10) \rightarrow c=5$		M1 A1	Uses the given point to find c
		Total:	3	
7(ii)	$7-x^{2}-6 x=16-(x+3)^{2}$		B1 B1	B1 $a=16, \mathbf{B} 1 b=3$.
		Total:	2	
7(iii)	$16-(x+3)^{2}>0 \rightarrow(x+3)^{2}<16$, and solve		M1	or factors $(x+7)(x-1)$
	End-points $x=1$ or -7		A1	
	$\rightarrow-7<x<1$		A1	needs $<$, not \leqslant (SR $x<1$ only, or $x>-7$ only B1 i.e. $1 / 3)$
		Total:	3	

Question	Answer	Marks	Guidance
8(i)	Letting M be midpoint of $A B$		
	$O M=8$ (Pythagoras) $\rightarrow X M=2$	B1	(could find $\sqrt{ } 40$ and use $\sin ^{-1}$ or $\cos ^{-1}$)
	$\tan A X M=\frac{6}{2} A X B=2 \tan ^{-1} 3=2.498$	M1 A1	AG Needs $\times 2$ and correct trig for M1
	(Alternative 1: $\sin A O M=\frac{6}{10}, A O M=0.6435, A X B=\pi-0.6435$)		(Alternative 1: Use of isosceles triangles, $\mathbf{B 1}$ for AOM, M1,A1 for completion) (Alternative 2: Use of circle theorem, B1 for AOB, M1,A1for completion)
	Total:	3	
8(ii)	$A X=\sqrt{ }\left(6^{2}+2^{2}\right)=\sqrt{ } 40$	B1	CAO, could be gained in part (i) or part (iii)
	$\operatorname{Arc} A Y B=r \theta=\sqrt{ } 40 \times 2.498$	M1	Allow for incorrect $\sqrt{ } 40$ (not $r=6 \operatorname{or} 12 \operatorname{or~} 10)$
	Perimeter $=12+\operatorname{arc}=27.8 \mathrm{~cm}$	A1	
	Total:	3	
8(iii)	area of sector $A X B Y=1 / 2 \times(\sqrt{ } 40)^{2} \times 2.498$	M1	Use of $1 / 2 r^{2} \theta$ with their $r,($ not $r=6 \mathrm{orr}=10)$
	Area of triangle $A X B=1 / 2 \times 12 \times 2$, Subtract these $\rightarrow 38.0 \mathrm{~cm}^{2}$	M1 A1	Use of $1 / 2 b h$ and subtraction. Could gain M1 with $r=10$.
	Total:	3	

Question	Answer		Marks	Guidance
9	$\mathrm{f}: x \mapsto \frac{2}{3-2 x} \mathrm{~g}: x \mapsto 4 x+a$			
9(i)	$y=\frac{2}{3-2 x} \rightarrow y(3-2 x)=2 \rightarrow 3-2 x=\frac{2}{y}$		M1	Correct first 2 steps
	$\rightarrow 2 x=3-\frac{2}{y} \rightarrow \mathrm{f}^{-1}(x)=\frac{3}{2}-\frac{1}{x}$		M1 A1	Correct order of operations, any correct form with $\mathrm{f}(x)$ or $y=$
		Total:	3	
9(ii)	$\operatorname{gf}(-1)=3 f(-1)=\frac{2}{5}$		M1	Correct first step
	$\frac{8}{5}+a=3 \rightarrow a=\frac{7}{5}$		M1 A1	Forms an equation in a and finds a, OE
				(or $\frac{8}{3-2 x}+a=3, \mathbf{M 1}$ Sub and solves M1, A1)
		Total:	3	
9 (iii)	$\mathrm{g}^{-1}(x)=\frac{x-a}{4}=\mathrm{f}^{-1}(x)$		M1	Finding $\mathrm{g}^{-1}(x)$ and equating to their $\mathrm{f}^{-1}(x)$ even if $a=7 / 5$
	$\rightarrow x^{2}-x(a+6)+4(=0)$		M1	Use of $b^{2}-4 a c$ on a quadratic with a in a coefficient
	Solving $(a+6)^{2}=16$ or $a^{2}+12 a+20(=0)$		M1	Solution of a 3 term quadratic
	$\rightarrow a=-2$ or -10		A1	
		Total:	4	

Question	Answer	Marks	Guidance
10(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-4}{(5-3 x)^{2}} \times(-3)$	B1 B1	B1 without $\times(-3)$ B1 For $\times(-3)$
	Gradient of tangent $=3$, Gradient of normal $-1 / 3$	*M1	Use of $m_{1} m_{2}=-1$ after calculus
	$\rightarrow \text { eqn: } y-2=-\frac{1}{3}(x-1)$	DM1	Correct form of equation, with (1, their y), not (1,0)
	$\rightarrow y=-\frac{1}{3} x+\frac{7}{3}$	A1	This mark needs to have come from $y=2, \mathrm{y}$ must be subject
	Total:	5	
10(ii)	$\mathrm{Vol}=\pi \int_{0}^{1} \frac{16}{(5-3 x)^{2}} \mathrm{~d} x$	M1	Use of $V=\pi \int y^{2} \mathrm{~d} x$ with an attempt at integration
	$\pi\left[\frac{-16}{(5-3 x)} \div-3\right]$	A1 A1	A1 without $(\div-3)$, A1 for $(\div-3)$
	$=\left(\pi\left(\frac{16}{6}-\frac{16}{15}\right)\right)=\frac{8 \pi}{5}($ if limits switched must show - to +$)$	M1 A1	Use of both correct limits M1
	Total:	5	

