| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2016 | 9709 | 73 |


| Qu | Answer | Marks | Notes |
| :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & 192.4 \pm z \sqrt{\frac{43.6}{150}} \\ & z=2.326 \text { to } 2.329 \\ & 191 \text { to } 194(3 \mathrm{sf}) \end{aligned}$ | M1 B1 A1 [3] | Allow $\frac{43.6}{\sqrt{150}}$ Allow one side for M1 <br> Condone $\sqrt{ }(43.6 / 149)$ oe CWO |
| 2 | $\mathrm{H}_{\mathrm{o}}$ : Pop mean yield $=8.2$ <br> $\mathrm{H}_{1}$ : Pop mean yield $>8.2$ <br> $\left( \pm \frac{8.7-8.2}{1.2 / \sqrt{16}}\right.$ $=( \pm) 1.667$ <br> Comp $z=1.645$ Or Area comparison $0.0475-0.0478)$ <br> Reject $\mathrm{H}_{0}$ <br> Evidence that mean yield has increased | B1 <br> M1 <br> A1 <br> M1 <br> A1^ [5] | or $\mu=8.2$ (not just "mean") <br> $\mu>8.2$ <br> Allow without $\sqrt{ } \operatorname{sign}$ (Allow cc) <br> Or comp 1 - $\Phi\left({ }^{\prime} 1.667\right.$ ') with 0.05 <br> Valid Comparison z-values (same sign) or areas <br> No Contradictions <br> No follow through for 2 tail test |
| 3 (i) <br> (ii) | Use of Poisson <br> Mean $=2.4$ $\begin{aligned} & 1-\mathrm{e}^{-2.4}\left(1+2.4+\frac{2.4^{2}}{2}\right) \\ & =0.43(0)(3 \mathrm{sf}) \end{aligned}$ $\begin{aligned} & 240>50 \text { or } \mathrm{n}>50 \\ & 240 \times 0.01=2.4<5 \text { or } \mathrm{np}<5 \text { or } \mathrm{p}<0.1 \end{aligned}$ | B1 <br> B1 <br> M1 <br> A1 <br> [4] <br> B1 <br> B1 <br> [2] | Allow any $\lambda$ (Allow one end error) <br> Final answer <br> SR Use of binomial: B1 for ans 0.431 (3 sf) <br> SR $n$ large, $p$ small: B1 |
| (ii) <br> (iii) | $\mathrm{H}_{0}$ : Pop mean $=2.5($ or 7.5$)$ <br> $\mathrm{H}_{0}$ : Pop mean $<2.5$ (or 7.5) $\begin{aligned} & \lambda=7.5 \\ & \mathrm{P}(X \leqslant 2)=\mathrm{e}^{-7.5}\left(1+7.5+\frac{7.5^{2}}{2}\right)=0.0203 \\ & \mathrm{P}(X \leqslant 3)=0.0203+\mathrm{e}^{-7.5} \times \frac{7.5^{3}}{3!}=0.0591 \end{aligned}$ <br> CR is $X \leqslant 2$ <br> Reject $\mathrm{H}_{0}$ <br> Evidence that no of sightings fewer $\mathrm{P}(\text { Type } \mathrm{I})=0.0203(3 \mathrm{sf})$ <br> $\mathrm{H}_{0}$ was rejected oe | M1 <br> A1 <br> A1 <br> A1 $\uparrow[5]$ <br> B1^ [1] <br> B1 [1] | or $\lambda=2.5$ (Not just "mean") Allow $\mu$ or $\lambda<2.5$ <br> Either $\mathrm{P}(\mathrm{X} \leqslant 2)$ or $\mathrm{P}(\mathrm{X} \leqslant 3)$, allow any $\lambda$ Both Correct <br> Clear statement <br> Follow through their CR/their $P(X \leqslant 2)$ <br> ft their $\mathrm{P}(X \leqslant 2)$ <br> or Type II is $\mathrm{P}\left(\right.$ not reject $\mathrm{H}_{0}$ )oe |
| $5 \quad$ (i) | $\begin{aligned} & k \int_{5}^{10}\left(10 t-t^{2}\right) \mathrm{d} t=1 \\ & k\left[5 t^{2}-\frac{t^{3}}{3}\right]_{5}^{10}=1 \\ & k\left(500-\frac{1000}{3}-\left(125-\frac{125}{3}\right)\right)=1 \\ & k \times \frac{250}{3}=1 \\ & \left(k=\frac{3}{250} \mathbf{A G}\right) \end{aligned}$ | A1 A1 [3] | Attempt to integrate, ignore limits <br> Correct integral and limits <br> No errors seen; No inexact decimals seen |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2016 | 9709 | $\mathbf{7 3}$ |

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Answer \& Marks \& Notes \\
\hline (ii)

(iii)

(iv) \& \begin{tabular}{l}
$$
\begin{aligned}
& \frac{3}{250} \int_{5}^{10}\left(10 t^{2}-t^{3}\right) \mathrm{d} t \\
& =\frac{3}{250}\left[\frac{10 t^{3}}{3}-\frac{t^{4}}{4}\right]_{5}^{10} \\
& =\frac{3}{250}\left(\frac{10000}{3}-\frac{10000}{4}-\left(\frac{1250}{3}-\frac{625}{4}\right)\right. \\
& =6.875 \text { or } 55 / 8
\end{aligned}
$$
$$
\begin{aligned}
& \mathrm{P}\left(T<\mathrm{E}(T)=\frac{3}{250}\left[5 t^{2}-\frac{t^{3}}{3}\right]^{" 6.875 "}\right. \\
& =0.5361 \\
& " 0.5361 "-0.5
\end{aligned}
$$ \\
$\mathrm{P}(T$ between $\mathrm{E}(T)$ \& median $=0.0361$ \\
10 (minutes)

 \&  \& 

Attempt to integrate, ignore limits \\
Correct integral and limit. Condone missing k \\
Allow 6.88 \\
ft their $\mathrm{E}(T)$ \\
allow 0.036 \\
Alternative Method \\
Integrate $\mathrm{f}(\mathrm{t})$ limits 5 and m equated to $0.5 \mathrm{M} 1^{*}$ \\
Integrate $f(t)$ limits their 6.736 (provided between 5 and 10) and their 6.875 DM 1 \\
Allow without "minutes"
\end{tabular} \\

\hline 6 (i) \& | $\begin{aligned} & \lambda=3.9 \\ & \mathrm{e}^{-3.9} \times \frac{3.9^{4}}{4!} \\ & =0.195 \end{aligned}$ $\bar{X} \sim \mathrm{~N}\left(1.6, \frac{1.6}{75}\right)$ $\begin{aligned} & \frac{1.7-1.6}{\sqrt{1 \frac{16}{15}}(=0.685)} \\ & 1-\Phi(" 0.685 ") \\ & =0.247(3 \mathrm{sf}) \end{aligned}$ |
| :--- |
| $X$ not normally distr. So CLT needed | \& | B1 |
| :--- |
| M1 |
| A1 [3] |
| B1 |
| B1 [2] |
| M1 |
| M1 |
| A1 [3] |
| B1 |
| [1] | \& | M1 allow any $\lambda$ |
| :--- |
| SR Combination method |
| B1 for $\lambda=1.6$ AND $\lambda=2.3$ used in combination method (at least 3 combinations) |
| M1 All correctly combined and added |
| B1 for $\mathrm{N}(1.6, \ldots .$.$) stated$ |
| B1 for Var $=\frac{1.6}{75}$ stated |
| SR, not stated but all implied in (iii): B1 |
| For standardising (using their values or correct values .Ignore cc |
| Correct area consistent with their working Accept use of $1 / 2 \mathrm{n}$ correction leading to 0.233 . NB Use of Poisson sum $\operatorname{Po}(120)$ and $\mathrm{N}(120,120)$ with $\mu=127.5$ leads to 0.247 , or 0.233 with cc |
| Not "it" | \\

\hline
\end{tabular}

| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2016 | 9709 | 73 |



