9709 s16 ms 73

 Page 4
 Mark Scheme
 Syllabus
 Paper

 Cambridge International A Level – May/June 2016
 9709
 73

Qu	Answer	Marks	Notes
1	$192.4 \pm z \sqrt{\frac{43.6}{150}}$	M1	Allow $\frac{43.6}{\sqrt{150}}$ Allow one side for M1
	<i>z</i> = 2.326 to 2.329 191 to 194 (3 sf)	B1 A1 [3]	Condone $\sqrt{(43.6/149)}$ oe CWO
2	H _o : Pop mean yield = 8.2 H ₁ : Pop mean yield > 8.2 $(\pm)\frac{8.7-8.2}{1.2/\sqrt{16}}$	B1 M1	or $\mu = 8.2$ (not just "mean") $\mu > 8.2$ Allow without $\sqrt{\text{sign}}$ (Allow cc)
	= $(\pm)1.667$ Comp z = 1.645 Or Area comparison 0.0475-0.0478) Reject H ₀ Evidence that mean yield has increased	A1 M1 A1∜ [*] [5]	Or comp 1 - $\Phi('1.667')$ with 0.05 Valid Comparison z-values (same sign) or areas No Contradictions No follow through for 2 tail test
3 (i)	Use of Poisson Mean = 2.4 $1 - e^{-2.4}(1 + 2.4 + \frac{2.4^2}{2})$ = 0.43(0) (3 sf)	B1 B1 M1 A1 [4]	Allow any λ (Allow one end error) Final answer SR Use of binomial: B1 for ans 0.431 (3 sf)
(ii)	240 > 50 or n>50 240 × 0.01 = 2.4 < 5 or np<5 or p<0.1	B1 B1 [2]	SR n large, p small: B1
4 (i)	H ₀ : Pop mean = 2.5 (or 7.5) H ₀ : Pop mean < 2.5 (or 7.5)	B1	or $\lambda = 2.5$ (Not just "mean") Allow μ or $\lambda < 2.5$
	$\lambda = 7.5$ P(X \le 2) = e ^{-7.5} (1+7.5+ $\frac{7.5^2}{2}$) = 0.0203 P(X \le 3)=0.0203 + e ^{-7.5} × $\frac{7.5^3}{3!}$ = 0.0591	M1 A1	Either P(X \leq 2) or P(X \leq 3), allow any λ Both Correct
	CR is $X \leq 2$	A1	Clear statement
	Reject H_0 Evidence that no of sightings fewer	A1 √^[5]	Follow through their CR/their $P(X \leq 2)$
(ii)	P(Type I) = 0.0203 (3 sf)	B1 √ [1]	ft their $P(X \leq 2)$
(iii)	H ₀ was rejected oe	B1 [1]	or Type II is P(not reject H ₀)oe
5 (i)	$k \int_{5}^{10} (10t - t^{2}) dt = 1$ $k \left[5t^{2} - \frac{t^{3}}{3} \right]_{5}^{10} = 1$	M1	Attempt to integrate, ignore limits
		A1	Correct integral and limits
	$k(500 - \frac{1000}{3} - (125 - \frac{125}{3})) = 1$ $k \times \frac{250}{3} = 1$ $(k = \frac{3}{250} \text{AG})$	A1 [3]	No errors seen; No inexact decimals seen

 9709_s16_ms_73

 Page 5
 Mark Scheme
 Syllabus
 Paper

 Cambridge International A Level – May/June 2016
 9709
 73

Qu	Answer	Mar	ks	Notes
(ii)	$\frac{3}{250} \int_{5}^{10} (10t^2 - t^3) \mathrm{d}t$	M1		Attempt to integrate, ignore limits
	$\frac{\frac{3}{250}}{\frac{3}{50}} \int_{5}^{10} (10t^2 - t^3) dt$ $= \frac{3}{250} \left[\frac{10t^3}{3} - \frac{t^4}{4} \right]_{5}^{10}$	A1		Correct integral and limit. Condone missing k
	$= \frac{3}{250} \left(\frac{10000}{3} - \frac{10000}{4} - \left(\frac{1250}{3} - \frac{625}{4} \right) \right)$ = 6.875 or 55/8	A1	[3]	Allow 6.88
(iii)	$P(T < E(T) = \frac{3}{250} \left[5t^2 - \frac{t^3}{3} \right]^{"6.875"} 5$	DM1* A1 [3]		ft their $E(T)$
	= 0.5361 "0.5361" - 0.5 D(T) to the second form = 0.02(1)			allow 0.036
	P(T between E(T) & median = 0.0361			Alternative Method Integrate f(t)limits 5 and m equated to 0.5 M1*
				Integrate f(t)limits their 6.736 (provided between 5 and 10) and their 6.875DM1
				Allow without "minutes"
(iv)	10 (minutes)	B1	[1]	
6 (i)	$\lambda = 3.9$ $e^{-3.9} \times \frac{3.9^4}{4!}$	B1 M1		M1 allow any λ
	= 0.195	A1	[3]	SR Combination method B1 for $\lambda = 1.6$ AND $\lambda = 2.3$ used in combination method (at least 3 combinations) M1 All correctly combined and added
(ii)	$\overline{X} \sim N(1.6, \frac{1.6}{75})$	B1 B1	[2]	B1 for N(1.6,)stated B1 for Var = $\frac{1.6}{75}$ stated SR, not stated but all implied in (iii): B1
(iii)	$\frac{\frac{1.7-1.6}{\sqrt{\frac{1.6}{75}}} (= 0.685)}{1 - 0.685''}$	M1		For standardising (using their values or correct values .Ignore cc
	$1 - \Phi(``0.685") = 0.247 (3 \text{ sf})$	M1 A1 [3]		Correct area consistent with their working Accept use of 1/2n correction leading to 0.233. NB Use of Poisson sum Po(120) and N(120,120) with μ =127.5 leads to 0.247, or 0.233 with cc
(iv)	X not normally distr. So CLT needed	B1	[1]	Not "it"

		9709 s	16 ms 7	3
Page 6	Mark Scheme	Syllabus	Paper	
	Cambridge International A Level – May/June 2016	9709	73	

Qu		Answer	Marks	Notes
7	(i)	E(T) = 20.8 Var(T)= 20 × 0.03 ² + 0.01 ² (= 0.0181) $\frac{20.6-20.8}{\sqrt{0.0181^{0}}}$ (= -1.487) $1 - \Phi(``1.487")$ = 0.0684 to 0.686	B1 B1 M1 M1 A1 [5]	or $\sqrt{(20 \times 0.03^2 + 0.01^2)} = 0.135$ (3sf) For standardising (σ must come from combination) Area consistent with their working Any answer within range
	(ii)	E(D) = 0 Var(D) = 2 × 0.0181(= 0.0362) $\frac{0.02-0}{\sqrt{0.0362}}$ (= 0.105) $\Phi((0.105'') = 0.5418 \text{ or } 1-\Phi(0.015)$ =0.4582	B1√ ^Å M1 A1	Both (Seen or implied) Allow without $$ Allow to 3sf
		-0.4382 $\Phi(``0.105") - (1 - \Phi(``0.105"))$ $(= 0.5418 - 0.4582)$ $= 0.0836/0.0837$	M1 A1 [5]	or $1 - 2(1 - \Phi(``0.105"))$ (= $1 - 2 \times 0.4582$)