Page 4	Mark Scheme	Syllabus \bar{s}	Paper
	Cambridge International A Level - May/June 2016	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

1	$\begin{aligned} & \frac{6.2}{\sqrt{50}} \text { or } \frac{62^{2}}{50} \\ & \frac{51-53}{6.2+\sqrt{50}}(=-2.281) \\ & \mathrm{P}\left(z>^{‘}-2.281^{\prime}\right)=\phi\left({ }^{(} 2.2811^{\prime}\right) \\ & =0.989(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { M1 } \\ \text { A1 } \end{array}$	seen or implied allow without $\div \sqrt{ } 50$ for finding correct area consistent with working as final answer
2 (i) (ii)	Conclude less than 90% satisfied when this is not true oe $\begin{aligned} & 1-\left(0.9^{15}+15 \times 0.9^{14} \times 0.1\right. \\ & \left.+{ }^{15} \mathrm{C}_{2} \times 0.9^{13} \times 0.1^{2}+{ }^{15} \mathrm{C}_{3} \times 0.9^{12} \times 0.1^{3}\right) \\ & =0.0556(3 \mathrm{sf}) \text { or } 0.055 \end{aligned}$	$\left\lvert\, \begin{array}{ll} \text { B11 } \\ \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \text { [3] } \end{array}\right.$	In context Attempt ($1-\mathrm{P}(X=15,14,13,12)$ allow 1 end error Attempt fully correct expression
(i) (ii) (a) (b)	Pop too big or takes too long oe or testing destroys articles oe $\begin{aligned} & z=1.96 \\ & 65.7 \pm z \times \frac{\sqrt{15}}{10} \\ & =64.9 \text { to } 66.5(3 \mathrm{sf}) \end{aligned}$ CI does not include 64.7 Probably has affected (or increased) mean bounce ht.		or too expensive oe or pop inaccessible oe seen Expression of correct form (must be ' z ' must be 65.7) Must be an interval allow 64.7 not within CI both needed. ft their CI ft 65.7/64.7 mix
4	```\[\mathrm{H}_{0}: \lambda(\text { or } \mu)=42 \] \[\mathrm{H}_{1}: \lambda(\text { or } \mu) \neq 42 \] \[\operatorname{Po}(42) \sim N(42,42) \text { stated or implied } \] \[\frac{53.5-42}{\sqrt{42}} \] \[=1.77(4) \text { (or } 0.038 \text { for area comparison) } \] \\ comp 1.96``` No evidence that mean has changed	$\mathrm{A} 1 \sqrt{\wedge}[6]$	Or pop weekly mean $=2.1$ etc. allow 'population mean' not just 'mean' ft their ' 42 ' (Accept alt method $\mathrm{N}(2.1,2.1 / 20)$ allow with wrong or no cc. Accept alt method using $\mathrm{N}(2.1,2.1 / 20)$ with or without cc Valid comp zor 1 - ('1.774') with 0.025 seen allow comp 1.645 if $\mathrm{H}_{1}: \lambda($ or $\mu)>42$ No contradictions. No ft for $\mathrm{H}_{1}: \lambda$ (or μ) >42 Note - accept other valid methods(e.g. cv method)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

5 (i) (ii)	$\begin{aligned} & T \sim \mathrm{~N}(520,70) \\ & \frac{530-520}{\sqrt{70^{\prime}}}(=1.195) \\ & \\ & \left({ }^{\prime} 1.195^{\prime}\right) \\ & =0.884(3 \mathrm{sf}) \\ & \\ & \mathrm{E}(T)=-10 \\ & \operatorname{Var}(T)=50+4.1^{2} \times 20(=386.2) \\ & \frac{0-(-10)}{\sqrt{386.2^{\prime}}}(=0.509) \\ & 1-\left({ }^{\prime} 0.509 {f60492468-4355-4bde-9094-9d87a284f25f}} 0.8700^{\prime}+\mathrm{e}^{-3.4} \times \frac{3.4^{6}}{6!} \\ & =0.94 \end{aligned}$			
Need 6 hair driers		\&	B1	
:---	:---			
M1				
A1	$[3]$			
M1				
A1	$[2]$			
M1				
A1	$[2]$			
M1				
A1				
A1	$[3]$	\&	any λ	
:---				
any λ, allow one end-error				
or complete method, any λ, allow one end-error				
or complete method, any λ				
fully correct un-simplified expression or better				
dep M1A1 with numerical justification (0.94 or better)	\\			

\hline | $7 \quad$ (a) |
| :--- |
| (b) (i) | \& \[

$$
\begin{aligned}
& 0.3 \text { or } 1-0.6 \text { or } 0.4 \text { or } 0.2 \text { seen } \\
& 0.8 \\
& k \int_{0}^{1.5}\left(2.25-x^{2}\right) \mathrm{d} x=1 \\
& k\left[2.25 x-\frac{x^{3}}{3}\right]_{0}^{1.5}=1 \\
& k \times[3.375-1.125]=1 \text { or } k \times \frac{9}{4}=1 \mathrm{oe} \\
& k=\frac{4}{9} \mathbf{A G}
\end{aligned}
$$

\] \& \[

\left[$$
\begin{array}{ll}
\mathbf{M 1} & \\
\text { A1 } & {[2]} \\
\mathbf{M 1} & \\
\mathbf{A 1} & \\
& \\
\text { A1 } & {[3]}
\end{array}
$$\right.

\] \& | attempt integ $\mathrm{f}(x)$ and ${ }^{\prime}=1$ '. Ignore limits correct integration and limits |
| :--- |
| No errors seen | \\

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

(ii) (iii) (iv)	$\begin{aligned} & \frac{4}{9} \int_{0}^{1.5}\left(2.25 x-x^{3}\right) \mathrm{d} x \\ & =\frac{4}{9}\left[2.25 \frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1.5} \\ & =0.5625 \text { or } 0.563 \end{aligned}$ Mean no. of hours $=56.25$ or 56.356 hrs 15 mins $\operatorname{Max} x$ is 1.5 , less than 2.9 or $150<290$ any a such that $2.9 \leqslant a \leqslant 5$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & {[4]} \\ \text { B1 } & {[1]} \\ \text { B1 } & {[1]} \end{array}$	attempt integ $x \mathrm{f}(x)$, ignore limits, condone missing k correct integration and limits, condone missing k ft their 0.5625 Needs numerical justification
	Total for paper	50	

