								<u>16 ms 72</u>
Page 4		1	Mark Scheme – Cambridge International A Level		Syllabus 9709	Paper 72		
			Cambridge International A Level –	Iviay	Jui		5105	12
1			$\frac{6.2}{\sqrt{50}} \text{ or } \frac{6.2^2}{50}$	B1		seen or implied allow without $\div $	50	
			$\frac{51-53}{6.2 \div \sqrt{50}} (= -2.281)$ $P(z > (-2.281') = \phi((2.281'))$ $= 0.989 (3 \text{ sf})$	M1 M1 A1	[4]	for finding correct working as final answer		stent with
2	(i)		Conclude less than 90% satisfied when this is not true oe	B11		In context		
	(ii)		$1 - (0.9^{15} + 15 \times 0.9^{14} \times 0.1 + {}^{15}C_2 \times 0.9^{13} \times 0.1^2 + {}^{15}C_3 \times 0.9^{12} \times 0.1^3)$ = 0.0556 (3 sf) or 0.0555	M1 M1 A1	[3]	Attempt (1–)P(X end error Attempt fully con		
3	(i)		Pop too big or takes too long oe or testing destroys articles oe	B 1	[1]	or too expensive or pop inaccessib		
	(ii)	(a)	z = 1.96 65.7 ± z × $\frac{\sqrt{15}}{10}$ = 64.9 to 66.5 (3 sf)	B1 M1 A1	[3]	seen Expression of commust be 65.7) Must be an interv		nust be 'z'
		(b)	CI does not include 64.7 Probably has affected (or increased) mean bounce ht.	B1√	[•] [1]	allow 64.7 not with both needed. ft th		7/64.7 mix
4			H ₀ : λ (or μ) = 42 H ₁ : λ (or μ) \neq 42 Po(42) ~ N(42, 42) stated or implied $\frac{53.5-42}{3}$	B1 B1√ M1		Or pop weekly m allow 'population ft their '42' (Acc N(2.1,2.1/20)	n mean' not ept alt meth	just 'mean'
			$\sqrt{42}$ = 1.77(4) (or 0.038 for area comparison)	A1		allow with wrong Accept alt metho with or without c	d using N(2	.1,2.1/20)
			comp 1.96 No evidence that mean has changed	M1 A1√	[6]	Valid comp z or 0.025 seen allow comp 1.64 No contradiction > 42 Note – accept oth cv method)	5 if H_1 : λ (or s. No ft for l	$(\mu) > 42$ H ₁ : λ (or μ)

		-	Maula Caleanaa			9709_s16_ms_72			
P	age :	>	Mark Scheme Cambridge International A Level	Syllabus Paper ne 2016 9709 72					
				inaj	/• ai				
5	(i)		$T \sim N(520, 70)$ $\frac{530-520}{\sqrt{70'}} (= 1.195)$	B1 B1		for N(520,) or N(500,) if standardising with 510 for Var = 70 seen or implied			
			('1.195') = 0.884 (3 sf)	M1 M1 A1	[5]	ft their E and Var; allow without $$ finding correct area consistent with working CWO			
	(ii)		E(T) = -10 Var(T) = 50 + 4.1 ² × 20 (= 386.2) $\frac{0-(-10)}{\sqrt{386.2'}}$ (= 0.509) 1 - ('0.509') = 0.305 (3 sf)	B1 B1 M1 M1 A1	[5]	or +10 for T < 0 Seen or implied ft their E and Var; allow without $$ finding correct area consistent with working			
6	(i)		$\lambda = 6.8$ $e^{-6.8} \times \frac{6.8^5}{5!}$ = 0.135 (3 sf)	B1 M1 A1	[3]	any λ			
	(ii)	(a)	$e^{-3.4}(1+3.4+\frac{3.4^2}{2}+\frac{3.4^3}{3!}+\frac{3.4^4}{4!})$	M1		any λ , allow one end-error			
			= 0.744 (3 sf)	A1	[2]				
		(b)	$(0.744) + e^{-3.4} \times \frac{3.4^5}{5!}$ = 0.87(0) (3 sf) or 0.871	M1 A1	[2]	or complete method, any λ , allow one end-error			
	(iii)		P(X ≤ 6) = '0.870' + $e^{-3.4} \times \frac{3.4^6}{6!}$ = 0.94	M1 A1		or complete method, any λ fully correct un-simplified expression or better			
			Need 6 hair driers	A1	[3]	dep M1A1 with numerical justification (0.94 or better)			
7	(a)		0.3 or 1 – 0.6 or 0.4 or 0.2 seen 0.8	M1 A1	[2]				
	(b)	(i)	$k \int_{0}^{1.5} (2.25 - x^2) dx = 1$	M1		attempt integ $f(x)$ and '= 1'. Ignore limits			
			$k \left[2.25x - \frac{x^3}{3} \right]_{0}^{1.0} = 1$	A1		correct integration and limits			
			0.8 $k \int_{0}^{1.5} (2.25 - x^{2}) dx = 1$ $k \Big[2.25x - \frac{x^{3}}{3} \Big]_{0}^{1.5} = 1$ $k \times [3.375 - 1.125] = 1 \text{ or } k \times \frac{9}{4} = 1 \text{ oe}$ $k = \frac{4}{9} \mathbf{AG}$	A1	[3]	No errors seen			

					9709 s	<u>16 ms 72</u>
Page 6	Mark Scheme	Syllabus	Paper			
	Cambridge International A Level –	ne 2016	9709	72		
(ii)	$\frac{4}{9} \int_{0}^{1.5} (2.25x - x^{3}) dx$ = $\frac{4}{9} \left[2.25 \frac{x^{2}}{2} - \frac{x^{4}}{4} \right]_{0}^{1.5}$ = 0.5625 or 0.563 Mean no. of hours = 56.25 or 56.3 56 hrs 15 mins	M1 A1 A1 A1√	* [4]	attempt integ $xf(x)$, ignore limits, condone missing k correct integration and limits, cond missing k		
(iii)	Max <i>x</i> is 1.5, less than 2.9 or $150 < 290$	B1	[1]	Needs numerica	l justificatior	1
(iv)	any <i>a</i> such that $2.9 \le a \le 5$	B1	[1]			
	Total for paper	r 50				