Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	71

Note: '(3 sfs)' means 'answer which rounds to... to 3 sfs '. If correct ans seen to $>3 \mathrm{sfs}$, ISW for later rounding. Penalise <3 sfs only once in paper.

1	$\begin{aligned} & \mathrm{B}\left(200, \frac{1}{6}\right) \rightarrow \mathrm{N}\left(\frac{100}{3}, \frac{250}{9}\right) \\ & \frac{25.5 \frac{100}{3}}{\sqrt{\frac{\sqrt{50} 9}{9}}} \\ & =-1.486 \end{aligned}$ comp ' 1.486 ' with 1.282 Evidence to reject H_{0} There is some evidence that $p<\frac{1}{6}$ or, e.g. It is likely that $p<\frac{1}{6}$ oe	B1 M1 A1 M1 A1 ft [5]	seen or implied allow with wrong or no cc (Accept alternative correct methods) or comp (' 1.486 ') with 0.1 No contradictions
2 (i) (ii) (iii)	Each employee has an equal chance of being chosen Est $(\mu)=4$ Est $\left(\sigma^{2}\right)=\frac{10}{9}\left(\frac{199.22}{10}-4^{\prime 2}\right)$ $=4.36(3 \mathrm{sf})$ Distances travelled by all employees at the firm	B1 $[1]$ B1 M1 A1 $[3]$ B1 $[1]$	oe sub in correct formula attempted working may not be seen oe
3 (i) (ii)	$\begin{aligned} & ((0.5672+0.6528) \div 2) \\ & =0.61 \\ & \\ & { }^{\prime} 0.61 ’+z \sqrt{\frac{0.011^{\left(11^{\prime-}-0.61\right)}}{350}}=0.6528 \\ & z=0.0428 \times \sqrt{\frac{700}{0.611^{\prime}\left(11^{-0.611)}\right.}} \text { oe } \\ & =2.321 \\ & 98 \% \text { confidence } \end{aligned}$	B1 [1] M1 M1 A1 A1 ft [4]	oe correct rearrangement of correct equn, ft '0.61' ft their z (dep on both Ms)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	71

4 (i) (ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=12.5 \\ & \mathrm{H}_{1}: \mu \neq 12.5 \\ & \frac{1.3-5-1.5}{4.2 \div \sqrt{50}} \\ & =1.68(4) \\ & \\ & \\ & \\ & 1.684 \prime<1.96 \end{aligned}$ No evidence that mean time has changed 0.05	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ & \\ \text { A1 ft } & {[5]} \\ \text { B1 } & {[1]} \end{array}$	allow $4.2 \div 50$ comp 1.96 allow comp 1.645 if $\mathrm{H} 1: \mu>$ 12.5 or comp 1 - ('1.684’) with 0.025 No contradictions ft their 1.684, but not comp 1.645
5 (i) (ii)	$\begin{aligned} & \mathrm{T} \sim \mathrm{~N}\left(6 \times 2.4,6 \times 0.3^{2}\right) \\ & (=\mathrm{N}(14.4,0.54) \\ & \frac{16-14.4^{\prime}}{\sqrt{0.54^{\prime}}}(=2.177) \\ & 1-\quad\left(2.177^{\prime}\right) \\ & =0.0147(3 \mathrm{sf}) \\ & D=X_{1}-1.1 X_{2} \\ & \mathrm{E}(D)=-0.24 \\ & \operatorname{Var}(D)=0.3^{2}+1.1^{2} \times 0.3^{2}(=0.1989) \\ & \frac{0-(-0.24)}{\sqrt{0} \cdot 1989^{\prime}}(=0.538) \\ & \quad\left({ }^{\prime} 0.538^{\prime}\right) \\ & =0.705(3 \mathrm{sf}) \end{aligned}$	M1 M1 M1 A1 $[4]$ B1 M1 M1 M1 A1 $[5]$	seen or implied ft their E and Var; allow without $\sqrt{ }$ (Accept alternative method $\left.\mathrm{N}\left(2.4,\left(0.3^{2}\right) / 6\right)\right)$ correct area consistent with their working ft their E and Var; allow without $\sqrt{ }$ correct area consistent with their working
6 (i) (ii) (iii)	$\begin{aligned} & 2 \mathrm{~m} \\ & k \int_{0}^{2} x^{2}(2-x) \mathrm{d} x=1 \\ & k\left[\frac{2 x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2} \\ & k \times\left[\frac{16}{3}-4\right]=1 \text { or } k \times \frac{4}{3}=1 \text { oe } \\ & k=\frac{3}{4} \mathbf{A G} \\ & \frac{3}{4} \int_{0}^{2} x^{3}(2-x) \mathrm{d} x \\ & =\frac{3}{4} \times\left[\frac{2 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{2} \end{aligned}$ 1.2 m oe	B1 $[1]$ M1 A1 A1 M1 A1 A1 $[3]$	allow without units attempt integ $\mathrm{f}(x)$ and ${ }^{\prime}=1$ '. Ignore limits correct integration and limits No errors seen attempt integ $x \mathrm{f}(x)$, condone missing k correct integration and limits, condone missing k allow without units

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	71

(iv)	$\begin{aligned} & \frac{3}{4} \int_{0}^{1} x^{2}(2-x) \mathrm{d} x \\ & \left(=\frac{3}{4} \times\left(\frac{2}{3}-\frac{1}{4}\right)\right) \\ & =\frac{5}{16} \text { or } 0.3125 \text { oe } \\ & 400 \times \frac{5}{16}=125 \end{aligned}$	M1 A1 A1 ft	attempt integ $\mathrm{f}(x), 0$ to 1 , condone missing k ft their $\frac{5}{16}$
7 (a) (i) (ii) (b)	$\begin{aligned} & 0.01 \times 80 \text { and } 0.015 \times 60 \\ & \left(1-\mathrm{e}^{-0.8}\right) \times\left(1-\mathrm{e}^{-0.9}\right) \\ & =0.327(3 \mathrm{sf}) \\ & \lambda=0.02 \times 40+0.015 \times 60 \\ & \mathrm{e}^{-1.7} \times\left(1+1.7+\frac{1.7^{2}}{2}\right) \\ & =0.757(3 \mathrm{sf}) \\ & \mathrm{e}^{-\lambda} \times \lambda=p \text { and } \mathrm{e}^{-\lambda} \times \frac{\lambda^{2}}{2}=1.5 p \\ & \lambda=3 \\ & p=\mathrm{e}^{-3} \times 3 \\ & =0.149(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3] M1 M1 A1 [3] M1 A1 M1 A1 [4]	$\left(1-\mathrm{e}^{-\lambda}\right) \times\left(1-\mathrm{e}^{-\mu}\right)$ any $\lambda, \mu(\lambda \neq \mu)$ allow one end error or their $0.8+0.9$ or $\mathrm{e}^{-\lambda} \times \frac{\lambda^{2}}{2}=1.5 \times \mathrm{e}^{-\lambda} \times \lambda$ seen or implied their λ

