Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	63

Qu	Answer				Marks	Guidance
(i) (ii)	Wears specs Not wears specs Total RH 6 19 25 Not RH 2 3 5 Total 8 22 $\mathrm{P}(X)=25 / 30, \mathrm{P}(Y)=8 / 30$$\begin{aligned} & \mathrm{P}(X) \times \mathrm{P}(Y)=25 / 30 \times 8 / 30=200 / 900=2 / 9 \\ & \mathrm{P}(X \cap Y)=6 / 30=1 / 5 \neq \mathrm{P}(X) \times \mathrm{P}(Y) \end{aligned}$ Not independent				B1 B1 $[2]$ M1 M1 A1 $[3]$	One correct row or col including total other than the Total row/column All correct $\mathrm{P}(X)$ or $\mathrm{P}(Y)$ from their table or correct from question (denom 30) oe Comparing their $\mathrm{P}(X) \times \mathrm{P}(Y)$ (values substituted) with their evaluated $\mathrm{P}(X \cap Y)$ not $\mathrm{P}(\mathrm{X}) \times \mathrm{P}(\mathrm{Y})$
2 (i) (ii)	girls smaller range or IQ range than boys/girls less spread out oe girls generally quicker than boys or girls median<boys median (not mean) oe boys almost symmetrical, girls + vely skewed oe					Labels 'time' and 'seconds', 'boys' and 'girls' on correct plots and scaled line One box and whisker all correct on graph paper - ignore boy or girl label Second box and whisker all correct (on graph paper and ignore boy/girl label) on SAME scaled line. Any 2 comments - MUST be a comparison
3 (i) (ii)	$\begin{aligned} & \mathrm{P}(3)=6 / 36, \mathrm{P}(4)=4 / 36, \mathrm{P}(5)=2 / 36 \\ & \text { mean score }=(0 \times 6+1 \times 10+16+18+16+10) / 36 \end{aligned}$				B1 B1 M1 A1 $[4]$ M1 A1 	Table oe seen with $0,1,2,3,4,5$ (6 if $P(6)=0)$ Any three probs correct $\Sigma p=1$ and at least 3 outcomes All probs correct Using $\Sigma x p$ (unsimplified) on its own condone Σp not $=1$

Page 5	Mark Scheme	Syllabus $\overline{\text { Paper }} \overline{\mathrm{r}}$	
	Cambridge International AS/A Level - May/June 2016	9709	63

Qu	Answer	Marks	Guidance
(i) (ii) (iii)	$\begin{aligned} & 1845 / 9(=205) \\ & c=2205-205=2000 \\ & \text { OR } \Sigma x=2205 \times 9(=19845) \\ & \Sigma x-\Sigma c=1845 \\ & \Sigma c=19845-1845=18000 \\ & c=2000 \\ & \text { var }=\frac{477450}{9}-205^{2} \\ & =11025 \\ & \text { OR var }=\frac{43857450}{9}-2205^{2} \\ & =11025 \\ & \text { new total }=2120.5 \times 10=21205 \\ & \text { new price }=21205-19845 \\ & =1360 \end{aligned}$	M1 A1 M1 A1 $[2]$ M1 A1 M1 A1 $[2]$ M1 A1 $[2]$	Accept ($1845 \pm$ anything) 9 For 2205×9 seen For $\frac{477450}{9}$-(their coded mean) ${ }^{2}$ For their $\Sigma x^{2} / 9-2205^{2}$ where Σx^{2} is obtained from expanding $\Sigma(x-c)^{2}$ with $2 c \Sigma x$ seen Attempt at new total
5 (i) (ii)	$\begin{aligned} & z=1.015 \\ & 1.015=\frac{70-69}{\sigma} \\ & \sigma=0.985(200 / 203) \\ & 58+9=67 \\ & \mathrm{P}(>67)=\mathrm{P}\left(z>\frac{67-69}{0.9852}\right) \end{aligned}$ $\begin{aligned} & =\mathrm{P}(z>-2.03) \\ & =0.9788 \end{aligned}$ $\begin{aligned} & 300 \times 0.9788 \\ & =293.6 \text { so } 293 \end{aligned}$	B1 M1 A1 $[3]$ M1 M1 M1 M1 [5]	Accept z between ± 1.01 and 1.02 Standardising $58+9$ seen or implied (or 69-58 or 69-9) Standardising $\pm z$ no cc allow their sd (must be +ve) Alt. $169-58=11, \mathrm{P}(>9)=\mathrm{P}\left(z>\frac{9-11}{0.9852}\right)$ Alt. $269-9=60, \mathrm{P}(>58)=\mathrm{P}\left(z>\frac{58-60}{0.9852}\right)$ Correct prob area Multiply their prob (from use of tables) by 300 - accept 293 or 294 from fully correct working

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	63

Qu	Answer	Marks	Guidance
(i) (ii) (iii) (iv) (v)	7560 ways RxxxxxxxG in $\frac{7!}{4!}$ $=210$ ways eg EEEExxxxx in $\frac{6!}{2!}$ $=360$ ways 1 R eg RVG or RVN or RGN $=3$ no Rs eg VGN or 3C3 ways $=1$ 2 Rs eg RRV or 3C1 ways $=3$ Total $=7$		7 ! alone seen in num or 4 ! alone in denom Must be in a fraction. $\frac{7!\times 2}{4!\times 2}$ gets full marks 6 ! or $5!\times 6$ seen in numerator or on own Can be $6!\times k$ but not $6!\pm k$ Summing at least 2 options for R Correct outcome for no Rs or 2 Rs evaluated
$7 \quad$ (i) (ii) (iii)	$\begin{aligned} & { }^{12} \mathrm{C}_{8}(0.65)^{8}(0.35)^{4}+{ }^{12} \mathrm{C}_{9}(0.65)^{9}(0.35)^{3}+{ }^{12} \mathrm{C}_{10} \\ & (0.65)^{10}(0.35)^{2} \\ & =0.541 \\ & \mathrm{P}(\bar{R} \bar{R} \bar{R} R)=0.35 \times 0.35 \times 0.35 \times 0.65 \\ & =0.0279 \\ & \mathrm{P}(7)=0.2039 \text { (unsimplified) } \\ & \mathrm{Mean}=250 \times{ }^{\prime} 0.2039{ }^{\prime}(=50.9798) \\ & \mathrm{Var}=250 \times{ }^{2} 0.20399^{\prime} \times{ }^{\circ}(1-0.2039)^{\prime} \\ & (=40.5851) \\ & \mathrm{P}(>54)=\mathrm{P}\left(\frac{54.5-50.9798}{\sqrt{40.5851}}\right) \\ & =\mathrm{P}(\mathrm{z}>0.5526) \\ & =1-\Phi(0.5526)=1-0.7098 \\ & =0.290 \end{aligned}$	M1 M1 A1 $[3]$ M1 A1 $[2]$ B1 B1 M1 M1 M1 A1 $[6]$	Bin term with ${ }^{12} \mathrm{C}_{\mathrm{r}} p^{\mathrm{r}}(1-p)^{12-\mathrm{r}}$ seen $r \neq 0$ any $p<1$ Summing 2 or 3 bin probs $\mathrm{p}=0.65$ or $0.35, \mathrm{n}=12$ Mult 4 probs either $(0.35)^{3}(0.65)$ or $(0.65)^{3}(0.35)$ ${ }^{12} \mathrm{C}_{7}(0.65)^{7}(0.35)^{5}$ Correct unsimplified np and npq using 'their 0.2039 ' but not 0.65 or 0.35 Standardising need sq rt - must be from working with 54 cc either 53.5 or 54.5 correct area <0.5 i.e. $1-\Phi$ - must be from working with 54

