Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	61

Question	Answer	Marks	Guidance
1	$\begin{aligned} & z=1.037 \\ & 1.037=\frac{1.8-1.62}{\sigma} \\ & \sigma=0.18 / 1.037=0.174 \end{aligned}$	B1 M1 A1 [3]	Rounding to 1.04 Standardising attempt allow cc no sq rt must have a z-value i.e. not 0.8023 or 0.5596 .
2	$\begin{aligned} & \mathrm{P}(\text { throwing a } 4)=(1-0.4) / 4 \\ & =0.15 \\ & \mathrm{P}(\text { at most } 1)=\mathrm{P}(0,1) \text { or } 1-\mathrm{P}(2,3) \\ & =(0.85)^{3}+{ }^{3} \mathrm{C}_{1}(0.15)(0.85)^{2} \\ & =0.939 \end{aligned}$	M1 A1 M1 M1 A1 [5]	Sensible attempt to find $\mathrm{P}(1)$ Correct answer A binomial term with ${ }^{3} \mathrm{C}_{n}$ oe any p Binomial expression with ${ }^{3} \mathrm{C}_{n} \mathrm{P}(0,1)$ or $\begin{aligned} & 1-\mathrm{P}(2,3) \\ & p=0.15 \text { or } 0.85 \end{aligned}$
3 (i) (ii)	$\begin{aligned} & P(\text { cup of coffee })=0.6 \times 0.9+0.4 \times 0.3 \\ & =0.66 \\ & P(\text { Not on time } \mid \text { no cup of coffee }) \\ & =\frac{P(\text { noton time } \cap \text { no cup })}{P(\text { nocup })}=\frac{0.4 \times 0.7}{1-0.66} \\ & =\frac{0.28}{0.34}=0.824 \end{aligned}$	M1 A1 [2] M1 M1 A1 [3]	Summing two 2-factor probabilities Correct answer accept 0.660 0.4×0.7 seen as num or denom of a fraction Attempt at P (no cup) as $0.1 \times p_{1}+0.7 \times p_{2}$ or as 1 - (i) seen anywhere
4	$[\mathrm{P}(X=0)]=\mathrm{P}(\mathrm{~B}, \mathrm{~B})=5 / 7 \times 4 / 6=10 / 21$ $\begin{aligned} & {[\mathrm{P}(X=1)]=\mathrm{P}(\mathrm{G}, \mathrm{~B})+\mathrm{P}(\mathrm{~B}, \mathrm{G})=2 / 7 \times 5 / 6 \times 2} \\ & =10 / 21 \\ & {[\mathrm{P}(X=2]=\mathrm{P}(\mathrm{G}, \mathrm{G})=2 / 7 \times 1 / 6=1 / 21} \\ & \mathrm{E}(X)=0+10 / 21+2 / 21=4 / 7(0.571) \end{aligned}$ $\begin{aligned} & \operatorname{Var}(X)=0+10 / 21+4 / 21-(4 / 7)^{2} \\ & =50 / 147(0.340) \end{aligned}$	M1 A1 A1 B1^ M1 A1 [6]	Attempt to find $\mathrm{P}(0)$ or $\mathrm{P}(1)$ or $\mathrm{P}(2)$ can be seen as $\mathrm{P}(\mathrm{BB})$ etc. or table unsimplified $\mathrm{P}(1)$ or $\mathrm{P}(\mathrm{BG})+\mathrm{P}(\mathrm{GB})$ correct $\mathrm{P}(0)$ or $\mathrm{P}(2)$ correct must see X value Correct answer ft their probs $\mathrm{P}(1)$ and P (2) Attempt at $\Sigma x^{2} p-[\mathrm{E}(X)]^{2}$
5 (i) (ii)	$\begin{aligned} & \mathrm{P}(x<3.0)=\mathrm{P}\left(z<\frac{3.0-2.6}{0.25}\right) \\ & +\mathrm{P}(z<1.6)=0.945 \end{aligned}$ $\begin{aligned} & X \sim \mathrm{~B}(500,0.9452) \sim \mathrm{N}(472.6,25.898) \\ & \mathrm{P}\left(z>\frac{479.5-472.6}{\sqrt{25.89848}}\right)=\mathrm{P}(z>1.3558) \\ & =1-0.9125=0.0875 \end{aligned}$	M1 M1 A1 [3] M1 M1 M1 M1 A1 [5]	Standardising no sq rt no cc Correct area i.e. prob >0.5 legit $500 \times$ ' 0.9452^{\prime} and $500 \times$ ' $0.9452^{\prime} \times\left({ }^{\prime} 1-\right.$ 0.9452^{\prime}) seen oe Standardising must have sq rt. All M marks indep cc either 479.5 or 480.5 seen correct area i.e. <0.5

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	61

Question	Answer	Marks	Guidance
(iii)	$\begin{aligned} & 500 \times 0.9452 \text { and } 500 \times(1-0.9452) \text { are } \\ & \text { both }>5 \end{aligned}$	B1^ [1]	$\begin{aligned} & \text { must see at least } 500 \times 0.0548>5 \text { oe } \mathrm{ft} \\ & \text { their (i) } \\ & \text { accept } n p>5, n q>5 \text { if both not } \\ & n p q>5 \end{aligned}$
(a) (i) (ii) (b)	$\begin{aligned} & 9 \times 9 \times 8 \\ & =648 \end{aligned}$ OR $900-28 \times 9=648$ ($7 \ldots$...in $1 \times 8 \times 4=32$ ways $8 \ldots$ in $1 \times 8 \times 5=40$ $9 \ldots$ in $1 \times 8 \times 4=32$ Total 104 ways R (6) $\mathrm{T}(5) \mathrm{D}(4)$ $223={ }^{6} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{3}=600$ $232={ }^{6} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{2}=900$ $322={ }^{6} \mathrm{C}_{3} \times{ }^{5} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2}=1200$ Total $=2700$	M1 M1 A1 [3] M1 M1 M1 A1 [4] M1 M1 A1 A1 [4]	Logical listing attempt Listing \#s starting with 7 or 9 and ending odd Mult 3 combs, ${ }^{6} \mathrm{C}_{x} \times{ }^{5} \mathrm{C}_{y} \times{ }^{4} \mathrm{C}_{z}$ Summing 2 or 3 three-factor outcomes can be perms, + instead of \times 2 options correct unsimplified
$\begin{array}{ll}7 & \text { (i) } \\ & \\ \\ \\ \\ \\ \\ \\ \\ & \\ & \\ \text { (ii) }\end{array}$	cf $16,56,104,130,160$ median $\$ 59$ $\begin{aligned} & \mathrm{IQR}=82-43 \\ & =\$ 39 \end{aligned}$	M1 B1 M1 A1 [4] B1§ M1 A1§ [3]	Attempt at cf table (up to 160) no graph needed accept \%cf but give final linear scale minimum 0 to 160 and 0 to 120 Attempt to plot points at (30, 16), (50, $56),(70,104),(90,130),(140,160)$ up to 2 errors can have a polygon All points correct from their scale and joined up, with $(0,0)$ as well accept $57-60$ or ft their graph if used lb , midpts instead of ub or assume linear interpolation. Subt a (sensible) LQ from a sensible UQ (generous) Ans ft need a cf graph and UQ 80-84, LQ

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	61

Question	Answer	Marks	Guidance
(iii) (iv)	$\begin{aligned} & 160-149 \\ & =11 \end{aligned}$ OR 115 is mid pt of last interval so \# of shoppers is $30 / 2=15$ (can be implied) $\begin{aligned} & \text { mean }=(15 \times 16+40 \times 40+60 \times 48+80 \times 26+ \\ & 115 \times 30) / 160 \\ & =10250 / 160=\$ 64.1=\$ 64.1 \end{aligned}$	M1 A1 [2] M1 A1 [2]	41-46 Subtracting from 160 can be implied Correct answer accept 9-16 Using $\Sigma x f / 160$ with mid-points

