Page 4

Mark Scheme Cambridge International AS/A Level – May/June 2016

<u>9709 s16 ms 61</u>

Syllabus	Paper
9709	61

Question	Answer	Marks	Guidance		
1	z = 1.037 18-162	B1	Rounding to 1.04		
	$1.037 = \frac{1.8 - 1.62}{\sigma}$	M1	Standardising attempt allow cc no sq rt must have a <i>z</i> -value i.e. not 0.8023 or 0.5596.		
	$\sigma = 0.18/1.037 = 0.174$	A1 [3]			
2	P (throwing a 4) = $(1 - 0.4) / 4$ = 0.15	M1 A1	Sensible attempt to find P(1) Correct answer		
	P(at most 1) = P(0, 1) or 1 - P(2, 3) = (0.85) ³ + ³ C ₁ (0.15) (0.85) ²	M1 M1	A binomial term with ${}^{3}C_{n}$ oe any <i>p</i> Binomial expression with ${}^{3}C_{n}$ P(0, 1) or 1 - P(2, 3) p = 0.15 or 0.85		
	= 0.939	A1 [5]	<i>p</i> 0.15 01 0.05		
3 (i)	P (cup of coffee) = $0.6 \times 0.9 + 0.4 \times 0.3$ = 0.66	M1 A1 [2]	Summing two 2-factor probabilities Correct answer accept 0.660		
(ii)	P(Not on time no cup of coffee)	M1	0.4×0.7 seen as num or denom of a fraction		
	$= \frac{P(\text{noton time} \cap \text{no cup})}{P(\text{no cup})} = \frac{0.4 \times 0.7}{1 - 0.66}$	M1	Attempt at P(no cup) as $0.1 \times p_1 + 0.7 \times p_2$ or as $1 - (i)$ seen anywhere		
	$= \frac{0.28}{0.34} = 0.824$	A1 [3]			
4	$[P(X=0)] = P(B, B) = 5/7 \times 4/6 = 10/21$	M1	Attempt to find P(0) or P(1) or P(2) can be seen as P(BB) etc. or table unsimplified		
	$[P(X=1)] = P(G,B) + P(B,G) = 2/7 \times 5/6 \times 2$ = 10/21	A1	P(1) or $P(BG)+P(GB)$ correct		
	$[P(X=2] = P(G, G) = 2/7 \times 1/6 = 1/21$	A1	P(0) or P(2) correct must see <i>X</i> value		
	E(X) = 0 + 10/21 + 2/21 = 4/7 (0.571)	B1√ [^]	Correct answer ft their probs P(1) and P(2)		
	$Var(X) = 0 + 10/21 + 4/21 - (4/7)^{2}$ = 50/147 (0.340)	M1 A1 [6]	Attempt at $\Sigma x^2 p - [E(X)]^2$		
5 (i)	$P(x < 3.0) = P\left(z < \frac{3.0 - 2.6}{0.25}\right) + P(z < 1.6) = 0.945$	M1 M1 A1 [3]	Standardising no sq rt no cc Correct area i.e. prob > 0.5 legit		
(ii)	$X \sim B(500, 0.9452) \sim N(472.6, 25.898)$ $P\left(z > \frac{479.5 - 472.6}{\sqrt{25.89848}}\right) = P(z > 1.3558)$ $= 1 - 0.9125 = 0.0875$	M1 M1 M1 A1 [5]	500 ×'0.9452' and 500×'0.9452'×('1 – 0.9452') seen oe Standardising must have sq rt. All M marks indep cc either 479.5 or 480.5 seen correct area i.e. < 0.5		

 9709 s16 ms 61

 Page 5
 Mark Scheme
 Syllabus
 Paper

 Cambridge International AS/A Level – May/June 2016
 9709
 61

Question	Answer	Marks	Guidance
(iii)	500× 0.9452 and 500× (1–0.9452) are both > 5	B1 √ [1]	must see at least $500 \times 0.0548 > 500$ ft their (i) accept $np > 5$, $nq > 5$ if both not npq > 5
6 (a) (i)	$9 \times 9 \times 8$	M1 M1	Logical listing attempt
	= 648	A1 [3]	
	$OR 900 - 28 \times 9 = 648$		
(ii)	$(7in 1 \times 8 \times 4 = 32 ways$	M1	Listing #s starting with 7 or 9 and ending odd
	8 in $1 \times 8 \times 5 = 40$ 9 in $1 \times 8 \times 4 = 32$	M1 M1	
	Total 104 ways	A1 [4]	
(b)	$ \begin{array}{l} R(6) T(5) D(4) \\ 2 2 3 = {}^{6}C_{2} \times {}^{5}C_{2} \times {}^{4}C_{3} = 600 \\ 2 3 2 = {}^{6}C_{2} \times {}^{5}C_{3} \times {}^{4}C_{2} = 900 \\ 3 2 2 = {}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{2} = 1200 \end{array} $	M1 M1	Mult 3 combs, ${}^{6}C_{x} \times {}^{5}C_{y} \times {}^{4}C_{z}$ Summing 2 or 3 three-factor outcomes can be perms, + instead of ×
	Total = 2700	A1 A1 [4]	2 options correct unsimplified
7 (i)	cf 16, 56, 104, 130, 160	M1	Attempt at cf table (up to 160) no graph needed accept %cf but give final
	160 cf 120 120	B1	linear scale minimum 0 to 160 and 0 to 120
	80 40	M1	Attempt to plot points at (30, 16), (50, 56), (70,104), (90, 130), (140, 160) up to 2 errors can have a polygon
	50 100 150 Amount spent \$	A1 [4]	All points correct from their scale and joined up, with (0,0) as well
(ii)	median \$59	B1√	accept 57–60 or ft their graph if used lb, midpts instead of ub or assume linear interpolation.
	IQR = 82 - 43 = \$39	M1 A1∛[3]	Subt a (sensible) LQ from a sensible UQ (generous) Ans ft need a cf graph and UQ 80–84, LQ

		9709 s	316 ms 6
Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	61

Question	Answer	Ma	rks	Guidance
(iii)	160 - 149 = 11 OR 115 is mid pt of last interval so # of shoppers is $30/2 = 15$ (can be implied)	M1 A1	[2]	41–46 Subtracting from 160 can be implied Correct answer accept 9–16
(iv)	$mean = (15 \times 16 + 40 \times 40 + 60 \times 48 + 80 \times 26 + 115 \times 30)/160$ = 10250/160 = \$64.1 = \$64.1	M1 A1	[2]	Using $\Sigma x f/160$ with mid-points