		9709 s	16 ms 43	3
Page 4	Mark Scheme	Syllabus	Paper	I
	Cambridge International AS/A Level – May/June 2016	9709	43	1

	Qu	Answer	Part Marks	Marks	Notes
1	(i)	$[PE gain = 8g \times 20sin30^{\circ}]$	M1		For using PE gain = <i>mgh</i>
		Change in PE is 800 J	A1	2	
	(ii)	$[8 g \ge 20 \sin 30^\circ + 20F =$ 1146]	M1		For using PE gain + WD against friction = 1146
		Frictional force is 17.3 N	A1	2	
2	(i)	$s_B = \frac{1}{2} \times 1.2 \times 5^2$ Distance travelled is 15 m	B1		
		$v_B = 1.2 \times 5$ Speed is 6 ms ⁻¹	B1	2	
	(ii)	[4T = 15 + 6(T - 10)] or [4(T + 5) = 15 + 6(T - 5)] or [4(T + 10) = 15 + 6T]	M1		For using $s_A = s_B$ after T seconds or after $T + 5$ seconds or after T + 10 seconds
		T = 22.5 or $T = 17.5$ or $T = 12.5Distance OP = 4 \times 22.5 = 90 m$	A1 B1	3	
3			M1		For resolving forces horizontally and/or vertically
		$12\cos75^\circ + P\cos\theta^\circ = 18\cos65^\circ$	A1		
		$18\sin 65^\circ + 12\sin 75^\circ = 15 + P\sin\theta^\circ$	A1		
		$[P^{2} = (18\sin65^{\circ} + 12\sin75^{\circ} - 15)^{2} + (18\cos65^{\circ} - 12\cos75^{\circ})^{2}]$ or $[\theta = \tan^{-1}(18\sin65^{\circ} + 12\sin75^{\circ} - 15)/(18\cos65^{\circ} - 12\cos75^{\circ})]$	M1		For eliminating either θ or <i>P</i> from the simultaneous equations
		$P = 13.7 \text{ or } \theta = 70.8$	A1		
		$\theta = 70.8 \text{ or } P = 13.7$	B 1	6	

Page 5

<u>9709_s16_ms_43</u>

	Syllabus	Paper
l – May/June 2016	9709	43

Qu	Answer	Part Marks	Marks	Notes
4	$R = 15g\cos 20^{\circ}$	B1		140.95
	$F = \mu R = 0.2 \times 15g \cos 20^{\circ}$	B 1		28.19
		M1		For resolving parallel to the plane (F acting up plane)
	$X + 0.2 \times 15g\cos 20^{\circ} = $ 15gsin20°	A1		
	Least value of <i>X</i> is 23.1	A1		AG
	$[X=15gsin20^{\circ} + 0.2 \times 15gcos20^{\circ}]$	M1		For resolving parallel to the plane (<i>F</i> acting down plane)
	Greatest value of <i>X</i> is 79.5	A1	7	
5 (i)	[20000/v = 650]	M1		For using $DF = P/v$ and for resolving forces along the direction of motion
	Speed is 30.8 ms^{-1}	A1	2	
(ii)	$[\mathrm{DF} = 650 + 1400g \times \frac{1}{7}]$	M1		For resolving forces along the direction of motion
	$P/10 = 650 + 1400g \times \frac{1}{7}$	M1		For using $DF = P/v$
	Power is 26500 W	A1	3	
(iii)	$P = 0.8 \times 26500(21200)$	B1√ [^]		ft $0.8 \times P$ from (ii)
	$[21200/20 + 1400g \times {}^{1}\!/_{7} - 650 = 1400a]$	M1		For using Newton's Second Law
	Acceleration is $1.72 \mathrm{ms}^{-2}$	A1	3	
6 (i) (a)		M1		For applying Newton's Second Law to one particle or for using $m_1g - m_2g = (m_1 + m_2)a$
	1.3 $g - T=1.3a$ and $T - 0.7g=0.7a$ or 1.3 $g - 0.7g=(1.3 + 0.7)a$ and either 1.3 $g - T=1.3a$ or $T - 0.7g=0.7a$			
	Tension is 9.1 N	A1 B1		

		9709 s	16 ms 43
Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	43

Qu	Answer	Part Marks	Marks	Notes
(b)	Acceleration is $3 \mathrm{ms}^{-2}$	B1		
	$[2 = \frac{1}{2} \times 3 \times t^2]$	M1		For using $s = \frac{1}{2} at^2$
	Time taken is 1.15 seconds	A1	6	
(ii)	$[v^2 = 2 \times 3 \times 2]$	M1		For using $v^2 = u^2 + 2as$ to find the speed on reaching plane
	$v = \sqrt{12(3.464)}$	A1√ [≜]		ft $\sqrt{(4a)}$ or <i>at</i> from (i)
	$[0 = 12 - 2gs \rightarrow s = \dots]$	M1		For using $v^2 = u^2 + 2as$ to find the distance 0.7 kg particle continues upwards
	Greatest height is 4.6 m	A1	4	
	Alternat	tive		
(ii)	$[1.3g \times 2 = \frac{1}{2} (1.3)v^2 + 9.1 \times 2]$			For using PE loss = KE gain + WD _T for 1.3 kg or for using WD _T = KE gain + PE gain for
	or [9.1 × 2 = $\frac{1}{2}(0.7)v^2 + 0.7g \times 2$]	M1		0.7 kg
	$v = \sqrt{12(3.464)}$	A1√ [^]		ft $\sqrt{(4a)}$ or <i>at</i> from (i)
	$[\frac{1}{2} \times 0.7v^2 = 0.7gs \rightarrow s = \dots]$	M1		For using KE loss = PE gain
	Greatest height is 4.6 m	A1	4	
7 (i)	$[6t - 2 < 0 \rightarrow t < \dots]$	M1		For solving $a(t) < 0$
	0 < t < 1/3	A1	2	
(ii)	$[v = 3t^2 - 2t + c]$	M1		For using $v(t) = \int a(t)dt$
		M1		For using $s(t) = \int v(t) dt$
	$s = t^3 - t^2 + ct + d$	A1		
	$\begin{bmatrix} c+d=7\\ 3c+d=11 \rightarrow c=\dots, d=\dots \end{bmatrix}$	M1		For using t=1, s=7 and t=3, s=29 to form and solve simultaneous equations
	$s = t^3 - t^2 + 2t + 5$	A1	5	
(iii)	$[3t^2 - 2t + 2 = 10]$	M1		For using $v(t) = 10$
		DM1		For solving 3 term quadratic $v(t) = 10$
	<i>t</i> = 2	A1	3	