Page 4

Mark Scheme Cambridge International AS/A Level – May/June 2016

<u>9709 s16 ms 4</u>2

	Syllabus	Paper	
2016	9709	42	

Qu	Answer	Part Marks	Mark	Notes
1	$[X=7-8\cos\alpha-6\sin\alpha=-3]$	M1		For resolving forces horizontally
	$[X = 7 - 8 \cos \alpha - 6 \sin \alpha = -3]$ X = 7 - 8 × (4/5) - 6 × (3/5) = -3 [Y = 8 \sin \alpha - 6 \cos \alpha = 0]	A1		Allow $\alpha = 36.9$ used
	$[Y=8\sin\alpha-6\cos\alpha=0]$	M1		For resolving forces vertically
	$Y = 8 \times (3/5) - 6 \times (4/5) = 0$	A1		Allow $\alpha = 36.9$ used
	Resultant force is 3N to the left	B 1	5	
2 (i)	$4t^{2} - 8t + 3 = 0$ (2t-3)(2t-1)	M1		Set $v = 0$ and attempt to factorise or use the quadratic formula or completing the square.
	t = 0.5 and $t = 1.5$	A1	2	
(ii)	t = 0.5 and t = 1.5 $s = -\int (4t^2 - 8t + 3) dt$	M1		Integrating v to find s . Allow minus sign omitted.
	$-\left[\frac{4}{3}t^{3}-4t^{2}+3t\right]_{0.5}^{1.5}$	M1		Attempted integration with limits substituted and then subtracted but not necessarily fully evaluated. [= -(0 - 2/3)] Allow first minus sign omitted
	Distance travelled $=2/3$ m	A1	3	Must justify sign of answer
3 (i)	[80x sin 22.6 or 80x(5/13)]	M1		For using PE change = mgh PE change = $8 \times g \times x \sin \alpha$
	$=\frac{400}{13}x=30.8x$	A1	2	Allow $\alpha = 22.6$ used
(ii)	WD against friction = $15 \times x$	B 1		
	$\frac{1}{2} \times 8 \times 5^2$ $\frac{1}{2} \times 8 \times 5^2 = \frac{400}{13} x + 15x$	B1		
	$\frac{1}{2} \times 8 \times 5^2 = \frac{400}{13} x + 15x$	M1		For using KE loss = PE gain + WD against friction
	$x = \frac{260}{119} = 2.18$	A1	4	

		9709 s	s16 ms 4	2
Page 5	Mark Scheme	Syllabus	Paper]
	Cambridge International AS/A Level – May/June 2016	9709	42]

Qu	Answer	Part Marks	Mark	Notes
4 (i)	$\frac{1}{2} \times 6 \times 8.2 + 36 \times 8.2$ Or $\frac{1}{2} \times 8.2 \times (36 + 42)$	M1		For using distance = total area under graph
	Distance = 319.8 m	A1	2	
(ii)	<i>s</i> = 80.2	B 1√ [^]		Distance from $t = 42$ to $t = 52$
	$80.2 = \frac{8.2 + V}{2} \times 10$	M1		For equating remaining distance to total area under graph between $t = 42$ and $t = 52$
	<i>V</i> = 7.84	A1	3	AG
(iii)		M1		Use gradient property for deceleration
	$d = \frac{8.2 - 7.84}{10} = 0.036$	A1	2	
	Alternativ	ve for 4(ii	i)	
(iii)	$80.2 = 8.2 \times 10 + \frac{1}{2} a \times 10^2$	M1		For using $s = ut + \frac{1}{2}at^2$ between $t = 42$ and $t = 52$
	$a = -0.036 \text{ ms}^{-2}$ or $d = 0.036 \text{ ms}^{-2}$	A1	2	
5		M1		For resolving forces perpendicular to the plane (3 term equation)
	$R+T\sin 20=2.5g\cos 30$	A1		
	$F = 0.25 \times R$	B 1		May be implied
		M1		For resolving forces parallel to the plane (3 term equation)
	$T\cos 20 = F + 2.5g\sin 30$	A1		
		M1		For solving and obtaining T
	<i>T</i> = 17.5	A1	7	

 9709 s16 ms 42

 Page 6
 Mark Scheme
 Syllabus
 Paper

 Cambridge International AS/A Level – May/June 2016
 9709
 42

Qu Answer		Part Marks	Mark	Notes				
	Alternative scheme							
5			$F = 0.25 \times R$	B1	May be implied			
				M1		For resolving forces horizontally (3 term equation)		
			$T\cos 50 = F\cos 30 + R\sin 30$	A1				
				M1		For resolving forces vertically (4 term equation)		
			$R\cos 30 + T\sin 50 = F\sin 30 + 2.5g$	A1				
				M1		For solving and obtaining T		
			T = 17.5	A1	7			
6	(i)	(a)	$Power = 1550 \times 40 W$	M1		Using Power = Fv where F = Resistance force		
			Power = $62000 \text{ W} = 62 \text{ kW}$	A1	2	Answer must be in kW		
		(b)	$(62000 - 22000) = DF \times 40$ [DF = 1000]	B1ft		For stating $P - 22000 = DF \times 40$ to find the new driving force. ft on Power found in (i)(a)		
			DF - 1550 = 1100a	M1		For applying Newton's second law to the car (3 terms)		
			$a = -0.5 \text{ ms}^{-2} \text{ or } d = 0.5 \text{ ms}^{-2}$	A1	3			
	(ii)		$DF = 1100g \sin 8 + 1550$ [= 3081]	M1		For stating the equilibrium of the three forces		
			80000 = 3081v	M1		For using $P = Fv$ with F involving a weight and a resistance term		
			$v = 26(.0) \text{ ms}^{-1}$	A1	3			

Page 7	Mark Sche Cambridge International AS/A	SyllabusPaper2016970942					
Qu	Answer	Part Marks	Mark	Notes			
7 (i)	[2.4g-T=2.4aT = 1.6a or the system equation 2.4g = (1.6 + 2.4)a]	M1		For applying Newton's second law t one of the particles or to the combined system			
		M1		For applying Newton's second law a second particle if needed and/or solving for <i>a</i>			
	$a = 6 \text{ ms}^{-2}$	A1					
	$a = 6 \text{ ms}^{-2}$ $0.5 = \frac{1}{2} \times 6 \times t^{2}$	M1		For using $s = ut + \frac{1}{2}at^2$			
	$t = 0.408 \mathrm{s}$	A1	5	Accept $t = \sqrt{6/6}$			
	Alteri	native for 7(i)				
(i)	[PE loss = $2.4 \times g \times 0.5 = 12$ KE gain = $\frac{1}{2}(1.6 + 2.4)v^2 = 2v^2$]	M1		For attempting to find PE and KE a <i>B</i> reaches the ground			
	$[12=2v^2]$	M1		Using PE loss = KE gain			
	$[12=2v^{2}]$ $v^{2} = 6 \rightarrow v = 2.45 \text{ ms}^{-1}$ $[0.5 = \frac{1}{2} \times (0 + 2.45) \times t]$	A1					
	$[0.5 = \frac{1}{2} \times (0 + 2.45) \times t]$	M1		Using $s = \frac{1}{2}(u+v)t$			
	$t = 0.408 \mathrm{s}$	A1	5	Accept $t = \sqrt{6/6}$			
(ii)	R = 1.6g = 16 and $F = 3/8$ $R = 6$	B1					
	System is $[2.4g - 6 = (1.6 + 2.4)a]$	M1		For using Newton's second law for both particles or the system			
	2.4g - T = 2.4a and $T - 6 = 1.6a$	A1		Both or system equation			
	[<i>a</i> = 4.5]	M1		For finding <i>a</i> and using $v^2 = u^2 + 2as$ to find <i>v</i> as <i>B</i> reaches the ground			
	$v = \sqrt{2 \times 4.5 \times 0.5} = \sqrt{4.5} = 2.12 \text{ ms}^{-1}$	A1					
	$v = \sqrt{2 \times 4.5 \times 0.5} = \sqrt{4.5} = 2.12 \text{ ms}^{-1}$ -6 = 1.6a \rightarrow a = -3.75 ms ⁻²	M1		For finding the deceleration of A an using $y^2 = y^2 + 2gg$ to find g the total			

A1

7

 $0 = 4.5 + 2 \times (-3.75) \times (s - 0.5)$

s = 1.1 m

using $v^2 = u^2 + 2as$ to find *s* the total

distance travelled by A

Page 8	Mark Scheme Cambridge International AS/A Level – May/June 2016					<u>16 ms 42</u> Paper 42	
Qu	Answer	Part Marks	Mark		Notes		
	First Alter	native for	7(ii)	l			
(ii)	R = 1.6g = 16 and $F = 3/8$ $R = 6$	B1					
		M1		For attempting PE loss and KE gains as <i>B</i> reaches the ground			
	PE loss = $2.4 \times g \times 0.5[= 12]$ KE gain = $\frac{1}{2} \times (1.6 + 2.4) \times v^2[= 2v^2]$	A1		For both PE and KE correct For using PE loss = KE gain + WD against F			
		M1					
	$12 = 2v^2 + 6 \times 0.5 \rightarrow v^2 = 4.5 \rightarrow v = 2.12$	A1					
	Loss of KE = WD against F	M1		For considering the motio			
	$[\frac{1}{2} \times 1.6 \times 4.5 = 6 \times (s - 0.5)]$			<i>B</i> reaches the ground to find <i>s</i> the total distance travelled			
	s = 1.1 m	A1	7				