					<u>9709</u> s	<u>16_ms_4</u> 1
Page 4	Mark Scheme				Syllabus	Paper
	Cambridge International AS/A	Level – M	ay/June 20	016	9709	41
Qu	Answer	Part Mark	Marks	Guidance		
1 (i)	Trapezium seen	B1		<i>v</i> – <i>t</i> graph with three straight lines, with positive, zero and negative gradients, continuous		
	0, 3, 9, 13 shown on the <i>t</i> axis	B1				
	v = 2.7 soi in either part	B1	[3]			
(ii)	$[0.5 \times (6+13) \times 2.7]$	M1		Using are	a of trapeziu	m
	Total distance = 25.65 m	A1	[2]	Allow Di	stance = 513	/20 m
	Alternative	e method for	r 1(ii)			
(ii)	Stage 1 $s_1 = 0.5 \times 0.9 \times 3^2 = 4.05$ Stage 2 $s_2 = 2.7 \times 6 = 16.2$ Stage 3 $s_3 = 0.5 \times (2.7 + 0) \times 4 = 5.4$	M1	[2]	Complete distance t constant a for all thr	e method to f ravelled by t acceleration ee stages	ind the total he lift using equations
			[2]			
2 (1)	$WD = 40 \times 36 = 1440 J$	BI				
(ii)		M1		Using PE	= mgh	
	$PE = 25 \times g \times 36 \sin 20 = 3080 \text{ J}$	A1	[2]	[PE = 307]	78.18]	
(iii)	WD by pulling force = (i) + (ii)	M1		For using WD by pu Gain in P	ulling force = E + WD aga	= inst F
	WD = 4520 J	A1	[2]	[WD = 45	518.18]	
Alternative for (iii)						
(iii)	$[(25g\sin 20+40)\times 36]$	M1		For attem force and the work	pting to find multiply it b done	the pulling by 36 to find
	WD = 4520 J	A1	[2]	[WD = 45	518.18]	

 9709 s16 ms 41

 Page 5
 Mark Scheme
 Syllabus
 Paper

 Cambridge International AS/A Level – May/June 2016
 9709
 41

Qu	Answer	Part Mark	Marks	Guidance	
3 (i)	Driving Force = 300	B1		Using DF = Resistance	
	$P = 300 \times 40$	M1		Using $P = Fv$	
	P = 12000 W = 12 kW	A1	[3]	Must give answer in kW	
(ii)	$P = 0.9 \times 12000 = 10800$	B1√ [^]		ft on 12000	
	$\frac{10800}{25} - 300 = 1000a$	M1		Applying Newton's second law with 3 terms to the car	
	$a = 132/1000 = 0.132 \text{ ms}^{-2}$	A1	[3]		
4	$P \cos \theta = 48 \cos \alpha - 14 \sin \alpha$ and/or $P \sin \theta = 50 - 48 \sin \alpha - 14 \cos \alpha$	M1		For resolving forces horizontally and/or vertically	
	$P \cos \theta = 48(24/25) - 14(7/25) = 42.16$	A1		Allow $\alpha = 16.3$ used throughout	
	$P \sin \theta = 50 - 48(7/25) - 14(24/25)$ = 23.12	A1			
		M1		For attempting to find <i>P</i> or θ	
	$P = \sqrt{42.16^2 + 23.12^2} = 48.1$	A1		Allow $P = 34\sqrt{2}$	
	$\tan \theta = \frac{23.12}{42.16}$ $\theta = 28.7$	B1	[6]		

Page 6

Mark Scheme Cambridge International AS/A Level – May/June 2016

41

Syllabus Paper

9709

Qu	Answer	Part Mark	Marks	Guidance
5	$R = 5g \cos \alpha = 4g$ $F = 0.5 \times 4g = 2g$	B1		For finding the normal reaction <i>R</i> acting on the 5 kg particle and using $F = \mu R$
		M1		For applying Newton's second law to one or both particles or to the system
	$T - 2g - 5g\sin\alpha = 5a \rightarrow$ $T - 5g = 5a$	A1		System equation is $10g - 5g \sin \alpha - 2g = 5g = 15a$
	10g - T = 10a	A1		
	[5g = 15a]	M1		For eliminating <i>T</i> and solve for <i>a</i>
	$a = g/3 = 3.33 \text{ ms}^{-2}$	A1		
	T = 10g - 10(g/3) = 20g/3 = 66.7 N	B1	[7]	
6 (i)	a = 12t - 30	M1		For differentiating v to find a
	<i>t</i> < 2.5	A1	[2]	
(ii)	v = 0 at $t = 1$ and $t = 4$	B1		Using $v = 6(t - 4)(t - 1)$
	$s = \int \left(6t^2 - 30t + 24\right) dt$	M1		For using integration to find s
	$=\frac{6}{3}t^3 - \frac{30}{2}t^2 + 24t$			
	$s = \left[2t^{3} - 15t^{2} + 24t\right]_{1}^{4}$	M1		For using limits
	Distance = 27 m	A1	[4]	
(iii)	$2t^3 - 15t^2 + 24t = 0$	M1		State $s = 0$
	$2t^2 - 15t + 24 = 0$	M1		Reduce to a quadratic and attempt to solve
	t = 2.31 and $t = 5.19$	A1	[3]	

 9709 s16 ms 41

 Page 7
 Mark Scheme
 Syllabus
 Paper

 Cambridge International AS/A Level – May/June 2016
 9709
 41

Qu	Answer	Part Mark	Marks	Guidance	
7 (i) (a)	$200 - 30g\sin 20 = 30a$	M1		For applying Newton's second law with 3 terms parallel to the plane	
	$a = 3.25 \text{ ms}^{-2}$	A1	[2]	[<i>a</i> = 3.2465]	
(b)	$[v^2 = 2 \times 3.2465 \times 12 = 77.9]$	M1		For using $v^2 = u^2 + 2as$ and attempting to find KE change	
	KE change = $0.5 \times 30 \times 77.9 = 1170 \text{ J}$	A1	[2]	[KE = 1168.7 J]	
Alternative method for 7(i)(b)					
(b)	KE change = $200 \times 12 - 30g \times 12 \sin 20$	M1		Using KE gain = WD by DF – PE gain	
	KE change = 1170 J	A1	[2]		
(ii) (a)	$N = 30g \cos 20$	B 1		[N = 281.9]	
	$F = 0.12 \times 30g \cos 20 [= 33.8]$	M1		Using $F = \mu N a$	
	$200 - 30g\sin 20 - 33.8 = 30a$	M1		For using Newton's second law with 4 terms applied to the particle	
	$a = 2.12 \text{ ms}^{-2}$	A1	[4]		
(b)	$N + 200 \sin 10 = 30g \cos 20$ [$N = 247.2$]	M1		For resolving forces perpendicular to the plane. Three term equation.	
	$F = 0.12 N [= 0.12 \times 247.2 = 29.66]$	M1		N must be from a 3 term equation	
	$200\cos 10 - 29.66 - 30g\sin 20 = 30a$	M1		For using Newton's second law with 4 terms applied to the particle	
	$a = 2.16 \text{ ms}^{-2}$	A1	[4]		