Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	33

1 EITHER: State or imply non-modular inequality $(2(x-2))^{2}>(3 x+1)^{2}$, or corresponding quadratic equation, or pair of linear equations $2(x-2)= \pm(3 x+1)$
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations for x M1
Obtain critical values $x=-5$ and $x=\frac{3}{5}$
State final answer $-5<x<\frac{3}{5}$

OR: Obtain critical value $x=-5$ from a graphical method, or by inspection, or by solving a linear
equation or inequality

Obtain critical value $x=\frac{3}{5}$ similarly

State final answer $-5<x<\frac{3}{5}$

[Do not condone \leq for $<$.]
2 (i) State or imply $y \ln 3=(2-x) \ln 4$
State that this is of the form $a y=b x+c$ and thus a straight line, or equivalent
State gradient is $-\frac{\ln 4}{\ln 3}$, or exact equivalent
$\begin{array}{lr}\text { (ii) Substitute } y=2 x \text { and solve for } x \text {, using a } \log \text { law correctly at least once } & \text { M1 } \\ \text { Obtain answer } x=\ln 4 / \ln 6 \text {, or exact equivalent } & \text { A1 }\end{array}$
(i) State answer $R=3$

Use trig formula to find
Obtain $\alpha=41.81^{\circ}$ with no errors seen
(ii) Evaluate $\cos ^{-1}(0.4)$ to at least 1 d.p. (66.42° to 2 d.p. $)$
Carry out an appropriate method to find a value of x in the given range
Obtain answer 216.5° only
[Ignore answers outside the given interval.]

(i) State $\frac{\mathrm{d} x}{\mathrm{~d} t}=1-\sin t$
 Use chain rule to find the derivative of y
 Obtain $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\cos t}{1+\sin t}$, or equivalent
 Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$

Obtain the given answer correctly
(ii) State or imply $t=\cos ^{-1}\left(\frac{1}{3}\right)$
Obtain answers $x=1.56$ and $x=-0.898$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	33

5 Separate variables and make reasonable attempt at integration of either integral M1
Obtain term $\frac{1}{2} \mathrm{e}^{2 y}$ B1
Use Pythagoras M1
Obtain terms $\tan x-x$ A1
Evaluate a constant or use $x=0, y=0$ as limits in a solution containing terms$a \mathrm{e}^{ \pm 2 y}$ and $b \tan x,(a b \neq 0)$M1
Obtain correct solution in any form, e.g. $\frac{1}{2} \mathrm{e}^{2 y}=\tan x-x+\frac{1}{2}$ A1
Set $x=\frac{1}{4} \pi$ and use correct method to solve an equation of the form $\mathrm{e}^{ \pm 2 y}=a$ or $\mathrm{e}^{ \pm y}=a$, where$a>0$M1
Obtain answer $y=0.179$ A1
6 (i) Use the product rule M1
Obtain correct derivative in any form A1
Equate 2-term derivative to zero and obtain the given answer correctly A1
(ii) Use calculations to consider the sign of a relevant expression at $p=2$ and $p=2.5$, or compare values of relevant expressions at $p=2$ and $p=2.5$ M1
Complete the argument correctly with correct calculated values A1
(iii) Use the iterative formula correctly at least once M1
Obtain final answer 2.15 A1
Show sufficient iterations to 4 d.p. to justify 2.15 to 2 d.p., or show there is a sign change in the interval $(2.145,2.155)$ A1
7 (i) State or imply $\mathrm{d} u=2 x \mathrm{~d} x$, or equivalentB1
Substitute for x and $\mathrm{d} x$ throughout M1
Reduce to the given form and justify the change in limits A1[3]
(ii) Convert integrand to a sum of integrable terms and attempt integration M1
Obtain integral $\frac{1}{2} \ln u+\frac{1}{u}-\frac{1}{4 u^{2}}$, or equivalent
(deduct A1 for each error or omission)
Substitute limits in an integral containing two terms of the form $a \ln u$ and $b u^{-2}$
Obtain answer $\frac{1}{2} \ln 2-\frac{5}{16}$, exact simplified equivalent A1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	33

8 (i) State a correct equation for $A B$ in any form, e.g. $\mathbf{r}=\mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}-\mathbf{j}+2 \mathbf{k})$, or equivalent

Equate at least two pairs of components of $A B$ and l and solve for λ or for μ

Obtain correct answer for λ or for μ, e.g. $\lambda=-1$ or $\mu=2$
Show that not all three equations are not satisfied and that the lines do not intersect
(ii) EITHER: Find $\overrightarrow{A P}$ (or $\overrightarrow{P A}$) for a general point P on l, e.g. $(1-\mu) \mathbf{i}+(-3+2 \mu) \mathbf{j}+(-2+\mu) \mathbf{k}$ B1
Calculate the scalar product of $\overrightarrow{A P}$ and a direction vector for l and equate to zero M1
Solve and obtain $\mu=\frac{3}{2}$ A1
Carry out a method to calculate $A P$ when $\mu=\frac{3}{2}$ M1
Obtain the given answer $\frac{1}{\sqrt{2}}$ correctly A1
$O R$ 1:Find $\overrightarrow{A P}$ (or $\overrightarrow{P A}$) for a general point P on l (B1
Use correct method to express $A P^{2}$ (or $A P$) in terms of μ M1
Obtain a correct expression in any form, e.g. $(1-\mu)^{2}+(-3+2 \mu)^{2}+(-2+\mu)^{2}$ A1
Carry out a complete method for finding its minimum M1
Obtain the given answer correctly A1)
OR 2:Calling $(2,-2,-1) C$, state $\overrightarrow{A C}($ or $\overrightarrow{C A})$ in component form, e.g. i-3j-2k (B1
Use a scalar product to find the projection of $\overrightarrow{A C}($ or $\overrightarrow{C A})$ on l M1
Obtain correct answer in any form, e.g. $\frac{9}{\sqrt{6}}$ A1
Use Pythagoras to find the perpendicular M1
Obtain the given answer correctly A1)
OR 3:State $\overrightarrow{A C}($ or $\overrightarrow{C A})$ in component form (B1
Calculate vector product of $\overrightarrow{A C}$ and a direction vector for l, e.g. $(\mathbf{i}-3 \mathbf{j}-2 \mathbf{k}) \times(-\mathbf{i}+2 \mathbf{j}+\mathbf{k})$ M1
Obtain correct answer in any form, e.g. $\mathbf{i}+\mathbf{j}-\mathbf{k}$ A1
Divide modulus of the product by that of the direction vector M1
Obtain the given answer correctly A1)
9 (i) EITHER: Multiply numerator and denominator of $\frac{u}{v}$ by $2+\mathrm{i}$, or equivalent M1
Simplify the numerator to $-5+5$ i or denominator to 5 A1
Obtain final answer $-1+$ I A1
OR: Obtain two equations in x and y and solve for x or for y (M1
Obtain $x=-1$ or $y=1$ A1
Obtain final answer $-1+$ I A1)[3]
(ii) Obtain $u+v=1+2 \mathrm{i}$ B1
In an Argand diagram show points A, B, C representing u, v and $u+v$ respectively B1 $\sqrt{\wedge}$State that $O B$ and $A C$ are parallelB1
State that $O B=A C$ B1

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	33

(iii) Carry out an appropriate method for finding angle $A O B$, e.g. find $\arg (u / v)$

Show sufficient working to justify the given answer $\frac{3}{4} \pi$

10 (i) State or imply the form $\frac{A}{x+3}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}$
Use a correct method to determine a constant
Obtain one of the values $A=-3, B=1, C=2$
Obtain a second value
Obtain the third value
[Mark the form $\frac{A}{x+3}+\frac{D x+E}{(x-1)^{2}}$, where $A=-3, D=1, E=1$, B1M1A1A1A1 as above.]
(ii) Use a correct method to find the first two terms of the expansion of $(x+3)^{-1},\left(1+\frac{1}{3} x\right)^{-1}$,
$(x-1)^{-1},(1-x)^{-1},(x-1)^{-2}$, or $(1-x)^{-2}$
Obtain correct unsimplified expressions up to the term in x^{2} of each partial fraction $\mathbf{A 1} \sqrt{ } \downarrow \mathbf{A} \mathbf{1}^{\wedge}+\mathbf{A} \mathbf{1}^{\curvearrowright}$
Obtain final answer $\frac{10}{3} x+\frac{44}{9} x^{2}$, or equivalent

