			9709 <u>s</u>	16_ms_33
Pa	ge 4	Mark Scheme	Syllabus	Paper
		Cambridge International A Level – May/June 2016	9709	33
1	EIT	<i>HER</i> : State or imply non-modular inequality $(2(x-2))^2 > (3x+1)^2$, or correspondent	nding quadrat	ic
	equa	ation, or pair of linear equations $2(x-2) = \pm (3x+1)$	0 1	B 1
	Mak	te reasonable solution attempt at a 3-term quadratic, or solve two linear equation	ns for <i>x</i>	M1
	Obt	ain critical values $x = -5$ and $x = \frac{3}{5}$		A1
	Stat	e final answer $-5 < x < \frac{3}{5}$		A1
	OR:	Obtain critical value $x = -5$ from a graphical method, or by inspection, or by so	olving a linea	r (D1
	equa Obt	ation or inequality ain critical value $x = \frac{3}{2}$ similarly		(B1 B2
	Stat	a final answer $5 < x < 3$		D2 D1)
	Stat	$= 111a1 answer - 5 < x < \frac{1}{5}$		DI)
		not condone \leq for $<$.]		[4]
2	(i)	State or imply $y \ln 3 = (2 - x) \ln 4$		B 1
		State that this is of the form $ay = bx + c$ and thus a straight line, or equivalent		B 1
		State gradient is $-\frac{\ln 4}{\ln 2}$, or exact equivalent		B 1
		111.5		[3]
	(ii)	Substitute $y = 2x$ and solve for x, using a log law correctly at least once Obtain answer $x = \ln 4 / \ln 6$, or exact equivalent		M1
		Solum unswer $x = m t / m s$, or exact equivalent		[2]
2		State an annual D		D 1
3	(1)	State answer $R = 3$ Use trig formula to find		ы М1
		Obtain $\alpha = 41.81^{\circ}$ with no errors seen		A1
				[3]
	(ii)	Evaluate $\cos^{-1}(0,4)$ to at least 1 d n (66.42° to 2 d n)		B1∱
	(11)	Carry out an appropriate method to find a value of x in the given range		M1
		Obtain answer 216.5° only		A1
		[Ignore answers outside the given interval.]		[3]
4	(i)	State $\frac{dx}{dt} = 1 - \sin t$		B1
	()	dt		M1
		$dy = \cos t$		IVII
		Obtain $\frac{dt}{dt} = \frac{1}{1 + \sin t}$, or equivalent		Al
		Use $\frac{dy}{dt} = \frac{dy}{dt} \div \frac{dx}{dt}$		M1
		dx = dt Obtain the given answer correctly		A1
				[5]
	(ii)	State or imply $t = \cos^{-1}(\frac{1}{3})$		B1
		Obtain answers $x = 1.56$ and $x = -0.898$		B1 + B1
				[3]

Pag	ge 5	Mark Scheme	Syllabus	Paper
	-	Cambridge International A Level – May/June 2016	9709	33
5 5	Sepa	rate variables and make reasonable attempt at integration of either integral		M
(Obta	in term $\frac{1}{2}e^{2y}$		B
τ	Use	Pythagoras		M
(Obta	in terms $\tan x - x$		A
I	Eval ±	uate a constant or use $x = 0$, $y = 0$ as limits in a solution containing terms		М
	ae Obto	and $b \tan x$, $(ab \neq 0)$		
(In correct solution in any form, e.g. $\frac{1}{2}e^{-x} = \tan x - x + \frac{1}{2}$	1	A
	Set x	$=\frac{1}{4}\pi$ and use correct method to solve an equation of the form $e^{-2y} = a$ or e^{-y}	= a, where	NÆ
(a > 0 Obta	in answer $v = 0.179$		
				[8]
5 ((i)	Use the product rule		M
		Obtain correct derivative in any form		A
		Equate 2-term derivative to zero and obtain the given answer correctly		[3
((ii)	Use calculations to consider the sign of a relevant expression at $p = 2$ and $p = 2$	2.5, or	M
		Complete the argument correctly with correct calculated values		
				[2]
((iii)	Use the iterative formula correctly at least once		M
		Show sufficient iterations to 4 d.p. to justify 2.15 to 2 d.p., or show there is a $\frac{1}{2}$	sign change	A
		in the interval (2.145,2.155)		A
				[3]
′ ((i)	State or imply $du = 2x dx$, or equivalent		B
		Substitute for x and dx throughout Reduce to the given form and justify the change in limits		
		Reduce to the given form and justify the change in minus		[3
((ii)	Convert integrand to a sum of integrable terms and attempt integration		M
		Obtain integral $\frac{1}{2}\ln u + \frac{1}{u} - \frac{1}{4u^2}$, or equivalent		A1 + A1
		(deduct A1 for each error or omission) Substitute limits in an integral containing two terms of the form $a \ln u$ and $b u$	-2	M
		Obtain answer $\frac{1}{2} \ln 2 - \frac{5}{2}$, exact simplified equivalent		A
		2 16 · · · · · · · · · · · · · · · · · ·		[5

		9709_s	16_ms_33
Ρ	age 6	Mark Scheme Syllabus	Paper
		Cambridge International A Level – May/June 2016 9709	33
8	(i)	State a correct equation for <i>AB</i> in any form, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} - \mathbf{j} + 2\mathbf{k})$, or equivalent	B 1
		Equate at least two pairs of components of AB and l and solve for λ or for μ	M1
		Obtain correct answer for λ or for μ , e.g. $\lambda = -1$ or $\mu = 2$	A1
		Show that not all three equations are not satisfied and that the lines do not intersect	A1
			[+]
	(ii)	<i>EITHER</i> : Find \overrightarrow{AP} (or \overrightarrow{PA}) for a general point P on l, e.g. $(1 - \mu)\mathbf{i} + (-3 + 2\mu)\mathbf{j} + (-2 + \mu)\mathbf{k}$	B 1
		Calculate the scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to zero	M1
		Solve and obtain $\mu = \frac{3}{2}$	A1
		Carry out a method to calculate AP when $\mu = \frac{3}{2}$	M1
		Obtain the given answer 1 compaths	4.1
		Obtain the given answer $\frac{1}{\sqrt{2}}$ correctly	AI
		<i>OR</i> 1:Find \overrightarrow{AP} (or \overrightarrow{PA}) for a general point <i>P</i> on <i>l</i>	(B 1
		Use correct method to express AP^2 (or AP) in terms of μ	M1
		Obtain a correct expression in any form, e.g. $(1 - \mu)^2 + (-3 + 2\mu)^2 + (-2 + \mu)^2$	A1
		Carry out a complete method for finding its minimum	M1
		Obtain the given answer correctly	A1)
		<i>OR</i> 2:Calling $(2, -2, -1)$ <i>C</i> , state \overrightarrow{AC} (or \overrightarrow{CA}) in component form, e.g. $\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$	(B 1
		Use a scalar product to find the projection of $\overrightarrow{AC}($ or $\overrightarrow{CA})$ on l	M1
		Obtain correct answer in any form, e.g. $\frac{9}{\sqrt{6}}$	A1
		Use Pythagoras to find the perpendicular	M1
		Obtain the given answer correctly	A1)
		<i>OR</i> 3:State \overrightarrow{AC} (or \overrightarrow{CA}) in component form	(B 1
		Calculate vector product of \overrightarrow{AC} and a direction vector for <i>l</i> , e.g. $(\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}) \times (-\mathbf{i} + 2\mathbf{j} + \mathbf{k})$	M1
		Obtain correct answer in any form, e.g. $\mathbf{i} + \mathbf{j} - \mathbf{k}$	A1
		Divide modulus of the product by that of the direction vector	M1
		Obtain the given answer correctly	AI) [5]
			[0]
9	(i)	<i>EITHER</i> : Multiply numerator and denominator of $\frac{u}{v}$ by 2 + i, or equivalent	M1
		Simplify the numerator to $-5 + 5i$ or denominator to 5	A1
		Obtain final answer $-1 + I$	A1
		<i>OR</i> : Obtain two equations in <i>x</i> and <i>y</i> and solve for <i>x</i> or for <i>y</i>	(M1
		Obtain $x = -1$ or $y = 1$	A1
		Obtain final answer $-1 + I$	A1) [3]
	(ii)	Obtain $u + v = 1 + 2i$	B1
	. /	In an Argand diagram show points A, B, C representing u , v and $u + v$ respectively	B1√^
		State that OB and AC are parallel State that $OB = AC$	B1 D1
		State that $OD = AC$	Б І [4]

		970)9 si	16 ms 33
Pa	age 7	7 Mark Scheme Sylla	bus	Paper
		Cambridge International A Level – May/June 2016 970)9	33
	(;;;;)	Carry out an appropriate method for finding angle AOB e.g. find $\arg(u/v)$		M1
	(111)	Carry out an appropriate method for minding angle AOD , e.g. find $arg(u + v)$		IVII
		Show sufficient working to justify the given answer $\frac{3}{4}\pi$		A1
				[2]
10	(i)	State or imply the form $\frac{A}{x+3} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$		B 1
		Use a correct method to determine a constant		M1
		Obtain one of the values $A = -3$, $B = 1$, $C = 2$		A1
		Obtain a second value		A1
		Obtain the third value		A1
		[Mark the form $\frac{A}{x+3} + \frac{Dx+E}{(x-1)^2}$, where $A = -3$, $D = 1$, $E = 1$, B1M1A1A1A1 as abov	e.]	[5]
	(ii)	Use a correct method to find the first two terms of the expansion of $(x+3)^{-1}$, $(1+\frac{1}{3}x)$	-1,	
		$(x-1)^{-1}$, $(1-x)^{-1}$, $(x-1)^{-2}$, or $(1-x)^{-2}$		M1
		Obtain correct unsimplified expressions up to the term in x^2 of each partial fraction A	$1\sqrt{1} + A$	1 [↑] + A 1 [↑]

Obtain final answer $\frac{10}{3}x + \frac{44}{9}x^2$, or equivalent

A1 [5]