		<u>9709</u>	;16_m	<u>s 32</u>
Page	4 Mark Scheme	Syllabus	Рар	er
	Cambridge International A Level – May/June 2016	9709	32	
1 Us	e law of the logarithm of a product, power or quotient		M1*	
Ob	tain a correct linear equation, e.g. $(3x - 1)\ln 4 = \ln 3 + x \ln 5$		A1	
So	lve a linear equation for x	I	DM1*	
Ob	tain answer $x = 0.975$		A1	[4]
•			3.64	
2 Sta	the a correct un-simplified version of the x or x^2 or x^2 term			
Sta Ob	to the part two terms $3 r^2 + 5 r^3$		AI 1 A1	[4]
00	tain the next two terms $\frac{1}{2}x + \frac{1}{2}x$	A	I AI	[4]
[Sy	wholic binomial coefficients, e.g. $\begin{pmatrix} -\frac{1}{2} \\ 3 \end{pmatrix}$ are not sufficient for the M mark.]			
3 Int	egrate by parts and reach $ax^2 \cos 2x + b \int x \cos 2x dx$		M1*	
Ob	tain $-\frac{1}{2}x^2\cos 2x + \int x\cos 2x$, or equivalent		A1	
Со	mplete the integration and obtain $-\frac{1}{2}x^2\cos 2x + \frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x$, or equivalent	nt	A1	
Us	e limits correctly having integrated twice	Ι)M1*	
Ob	tain answer $\frac{1}{8}(\pi^2 - 4)$, or exact equivalent, with no errors seen		A1	[5]
4 Sta Us Ob Eq Ob	the or imply derivative of $(\ln x)^2$ is $\frac{2\ln x}{x}$ e correct quotient or product rule tain correct derivative in any form, e.g. $\frac{2\ln x}{x^2} - \frac{(\ln x)^2}{x^2}$ uate derivative (or its numerator) to zero and solve for $\ln x$ tain the point (1, 0) with no errors seen		B1 M1 A1 M1 A1	
Ob	tain the point $(e^2, 4e^{-2})$		A1	[6]
5 (3)	EITHER, Express and Adia terms of and 20 and/on sin 20		D1	
5 (I)	LITHER. Express $\cos 4\theta$ in terms of $\cos 2\theta$ and/or $\sin 2\theta$ Use correct double angle formulae to express LHS in terms of $\sin \theta$ and/or $\cos \theta$	θ	DI M1	
	Obtain a correct expression in terms of sin θ alone	0	A1	
	Reduce correctly to the given form		A1	
	<i>OR</i> : Use correct double angle formula to express RHS in terms of $\cos 2\theta$		M1	
	Express $\cos^2 2\theta$ in terms of $\cos 4\theta$		B1	
	Obtain a correct expression in terms of $\cos 4\theta$ and $\cos 2\theta$		A1	
	Reduce correctly to the given form		A1	[4]
(ii)	Use the identity and carry out a method for finding a root		M1	
. /	Obtain answer 68.5°		A1	
	Obtain a second answer, e.g. 291.5°		A1√	
	Obtain the remaining answers, e.g. 111.5° and 248.5°, and no others in the give interval [Ignore answers outside the given interval. Treat answers in radians as a misrea	en ad.]	A1√	[4]
		-		

P	age 5	Mark Scheme	9709 s Svllabus	<u>16 m</u> Pap	<u>s 32</u> er
-	ugo o	Cambridge International A Level – May/June 2016	9709	32	01
6	(i)	Separate variables correctly and attempt integration of at least one side Obtain term ln x Obtain term of the form $k \ln(3 + \cos 2\theta)$, or equivalent		B1 B1 M1	
		Obtain term $-\frac{1}{2}\ln(3 + \cos 2\theta)$, or equivalent		A1	
		Use $x = 3$, $\theta = \frac{1}{4}\pi$ to evaluate a constant or as limits in a solution			
		with terms $a \ln x$ and $b \ln(3 + \cos 2\theta)$, where $ab \neq 0$		M1	
		State correct solution in any form, e.g. $\ln x = -\frac{1}{2}\ln(3 + \cos 2\theta) + \frac{3}{2}\ln 3$		A1	
		Rearrange in a correct form, e.g. $x = \sqrt{\left(\frac{27}{3 + \cos 2\theta}\right)}$		A1	[7]
	(ii)	State answer $x = 3\sqrt{3}/2$, or exact equivalent (accept decimal answer in [2.59, 2.60])		B1	[1]
7	(i)	State or imply the form $A + \frac{B}{2r+1} + \frac{C}{r+2}$		B 1	
		State or obtain $A = 2$		B 1	
		Use a correct method for finding a constant		M1	
		Obtain one of $B = 1$, $C = -2$ Obtain the other value		AI A1	[5]
					[-]
	(ii)	Integrate and obtain terms $2x + \frac{1}{2}\ln(2x+1) - 2\ln(x+2)$		B3√ [*]	
		Substitute correct limits correctly in an integral with terms $a \ln(2x+1)$			
		and $b \ln(x+2)$, where $ab \neq 0$		M1	
		Obtain the given answer after full and correct working		A1	[5]
8	(i)	Use correct quotient or chain rule		M1	
		Obtain correct derivative in any form		A1	503
		Obtain the given answer correctly		A1	[3]
	(ii)	State a correct equation, e.g. $-e^{-a} = -\csc a \cot a$		B 1	
		Rearrange it correctly in the given form		B1	[2]
	(iii)	Calculate values of a relevant expression or pair of expressions at $x = 1$ and $x =$	= 1.5	M1	
		Complete the argument correctly with correct calculated values		A1	[2]
	(iv)	Use the iterative formula correctly at least once		M1	
	. /	Obtain final answer 1.317		A1	
		Show sufficient iterations to 5 d.p. to justify 1.317 to 3 d.p., or show there is a change in the interval (1.3165, 1.3175)	sign	A 1	[2]
		enange in the litter var (1.5105, 1,5175)		AI	$[\mathcal{I}]$

1 440 0	Mark Scheme	Svllabus	Pap	er
Ŭ	Cambridge International A Level – May/June 2016	9709	32	
9 (i)	<i>Either</i> state or imply \overrightarrow{AB} or \overrightarrow{BC} in component form, <i>or</i> state position vector of midpoint of \overrightarrow{AC}		B 1	
	Use a correct method for finding the position vector of D Obtain answer $3\mathbf{i} + 3\mathbf{j} + \mathbf{k}$, or equivalent		M1 A1	
	<i>EITHER</i> : Using the correct process for the moduli, compare lengths of a pair of adjacent sides,	f		
	e.g. <i>AB</i> and <i>BC</i> Show that <i>ABCD</i> has a pair of adjacent sides that are equal		M1 A1	
	<i>OR</i> : Calculate scalar product $\overrightarrow{AC}.\overrightarrow{BD}$ or equivalent Show that <i>ABCD</i> has perpendicular diagonals		M1 A1	[5]
(ii)	<i>EITHER</i> : State $a + 2b + 3c = 0$ or $2a + b - 2c = 0$ Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = -7 : 8 : -3$, or equivalent Substitute coordinates of a relevant point in $-7x + 8y - 3z = d$, and evaluate Obtain answer $-7x + 8y - 3z = 29$, or equivalent		B1 M1 A1 M1 A1	
	<i>OR</i> 1:Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \times (2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$		M1	
	Obtain correct product, e.g. $-7\mathbf{i} + 8\mathbf{j} - 3\mathbf{k}$ Substitute accordinates of a relevant point in $-7\mathbf{r} + 8\mathbf{y} - 3\mathbf{z} - d$ and evaluate d		A1 M1	
	Obtain answer $-7x + 8y - 3z = 29$ or equivalent		A1	
	<i>OR</i> 2:Attempt to form a 2-parameter equation with relevant vectors State a correct equation, e.g. $\mathbf{r} = 2\mathbf{i} + 5\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) + \mu(2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$		M1 A1	
	State 3 equations in x, y, z, λ and μ Eliminate λ and μ Obtain answer $-7x + 8y - 3z = 29$, or equivalent		A1 M1 A1	
	<i>OR3</i> :Using a relevant point and relevant direction vectors, form a determinant equation for the plane $ x - 2 - y - 5 - z + 1 $		M1	
	State a correct equation, e.g. $\begin{vmatrix} x-2 & y-3 & 2+1 \\ 1 & 2 & 3 \\ 2 & 1 & -2 \end{vmatrix} = 0$		A1	
	Attempt to expand the determinant		M1	
	Obtain correct values of two cofactors Obtain answer $-7x + 8y - 3z = 29$, or equivalent		A1 A1	[5]

			9709_s16_ms_3			
Page 7		7 Mark Scheme Cambridge International A Level – May/June 2016		Syllabus	Paper 32	
				9709		
10	(a)	EIT	<i>HER</i> : Use quadratic formula to solve for z		M1	
		Use	$i^2 = -1$		M1	
		Obt	ain a correct answer in any form, simplified as far as $(-2 \pm i\sqrt{8})/2i$		A1	
		Mu	ltiply numerator and denominator by i, or equivalent		M1	
		Obt	ain final answers $\sqrt{2}$ + i and $-\sqrt{2}$ + i		A1	
		OR:	Substitute $x + iy$ and equate real and imaginary parts to zero		M1	
		Use	$i^2 = -1$		M1	
		Obt	ain $-2xy + 2x = 0$ and $x^2 - y^2 + 2y - 3 = 0$, or equivalent		A1	
		Solv	ve for x and y		M1	
		Obt	ain final answers $\sqrt{2}$ + i and $-\sqrt{2}$ + i		A1	[5]
	(b)	(i)	<i>EITHER</i> : Show the point representing 4 + 3i in relatively correct position		B 1	
		Show the perpendicular bisector of the line segment joining this point to the	ne			
			origin		B 1∛	[2]
			<i>OR</i> : Obtain correct Cartesian equation of the locus in any form, e.g. $8x + 6y = 25$		B 1	
			Show this line [This f.t. is dependent on using a correct method to determine the equation	ı.]	B1√ [^]	
		(ii)	State or imply the relevant point is represented by $2 + 1.5i$ or is at $(2, 1.5)$ Obtain modulus 2.5		B1 B1√ [^]	
			Obtain argument 0.64 (or 36.9°) (allow decimals in [0.64, 0.65] or [36.8, 36.9])		R1√	[3]
			50.5])		D 11	[-]