Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	$\mathbf{9 7 0 9}$	$\mathbf{3 2}$

1 Use law of the logarithm of a product, power or quotient
Obtain a correct linear equation, e.g. $(3 x-1) \ln 4=\ln 3+x \ln 5$
Solve a linear equation for x
Obtain answer $x=0.975$

2 State a correct un-simplified version of the x or x^{2} or x^{3} term
State correct first two terms $1+x$
Obtain the next two terms $\frac{3}{2} x^{2}+\frac{5}{2} x^{3}$
[Symbolic binomial coefficients, e.g. $\binom{-\frac{1}{2}}{3}$ are not sufficient for the M mark.]

3 Integrate by parts and reach $a x^{2} \cos 2 x+b \int x \cos 2 x \mathrm{~d} x$
Obtain $-\frac{1}{2} x^{2} \cos 2 x+\int x \cos 2 x$, or equivalent
Complete the integration and obtain $-\frac{1}{2} x^{2} \cos 2 x+\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x$, or equivalent
Use limits correctly having integrated twice
DM1*
Obtain answer $\frac{1}{8}\left(\pi^{2}-4\right)$, or exact equivalent, with no errors seen

4 State or imply derivative of $(\ln x)^{2}$ is $\frac{2 \ln x}{x}$
Use correct quotient or product rule
Obtain correct derivative in any form, e.g. $\frac{2 \ln x}{x^{2}}-\frac{(\ln x)^{2}}{x^{2}}$
Equate derivative (or its numerator) to zero and solve for $\ln x$
Obtain the point $(1,0)$ with no errors seen M1

Obtain the point $\left(\mathrm{e}^{2}, 4 \mathrm{e}^{-2}\right)$

5 (i) EITHER: Express $\cos 4 \theta$ in terms of $\cos 2 \theta$ and/or $\sin 2 \theta$
B1
Use correct double angle formulae to express LHS in terms of $\sin \theta$ and/or $\cos \theta \quad$ M1
Obtain a correct expression in terms of $\sin \theta$ alone A1
Reduce correctly to the given form
$O R$: Use correct double angle formula to express RHS in terms of $\cos 2 \theta$
M1
Express $\cos ^{2} 2 \theta$ in terms of $\cos 4 \theta$
B1
Obtain a correct expression in terms of $\cos 4 \theta$ and $\cos 2 \theta$
A1
Reduce correctly to the given form
A1
(ii) Use the identity and carry out a method for finding a root M1

Obtain answer 68.5
A1
Obtain a second answer, e.g. 291.5°
Obtain the remaining answers, e.g. 111.5° and 248.5°, and no others in the given interval
[Ignore answers outside the given interval. Treat answers in radians as a misread.]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	32

6 (i) Separate variables correctly and attempt integration of at least one side B1
Obtain term $\ln x$ B1
Obtain term of the form $k \ln (3+\cos 2 \theta)$, or equivalent M1
Obtain term $-\frac{1}{2} \ln (3+\cos 2 \theta)$, or equivalent A1Use $x=3, \theta=\frac{1}{4} \pi$ to evaluate a constant or as limits in a solutionwith terms $a \ln x$ and $b \ln (3+\cos 2 \theta)$, where $a b \neq 0$M1
State correct solution in any form, e.g. $\ln x=-\frac{1}{2} \ln (3+\cos 2 \theta)+\frac{3}{2} \ln 3$ A1
Rearrange in a correct form, e.g. $x=\sqrt{\left(\frac{27}{3+\cos 2 \theta}\right)}$A1
(ii) State answer $x=3 \sqrt{3} / 2$, or exact equivalent (accept decimal answer in [2.59, 2.60])
7 (i) State or imply the form $A+\frac{B}{2 x+1}+\frac{C}{x+2}$B1
State or obtain $A=2$ B1
Use a correct method for finding a constant M1
Obtain one of $B=1, C=-2$ A1Obtain the other valueA1
(ii) Integrate and obtain terms $2 x+\frac{1}{2} \ln (2 x+1)-2 \ln (x+2)$ B3 ${ }^{\wedge}$Substitute correct limits correctly in an integral with terms $a \ln (2 x+1)$and $b \ln (x+2)$, where $a b \neq 0$M1
Obtain the given answer after full and correct working A1
8 (i) Use correct quotient or chain rule M1
Obtain correct derivative in any form A1
Obtain the given answer correctly A1
(ii) State a correct equation, e.g. $-\mathrm{e}^{-a}=-\operatorname{cosec} a \cot a$ B1Rearrange it correctly in the given formB1
(iii) Calculate values of a relevant expression or pair of expressions at $x=1$ and $x=1.5$ M1
Complete the argument correctly with correct calculated values A1
(iv) Use the iterative formula correctly at least once M1
Obtain final answer 1.317 A1

Obtain final answer 1.317Show sufficient iterations to 5 d.p. to justify 1.317 to 3 d.p., or show there is a signchange in the interval $(1.3165,1,3175)$
Rearrange it correctly in the given form

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	32

9 (i) Either state or imply $\overrightarrow{A B}$ or $\overrightarrow{B C}$ in component form, or state position vector of \quad B1
Use a correct method for finding the position vector of D M1
Obtain answer $3 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$, or equivalent A1
EITHER: Using the correct process for the moduli, compare lengths of a pair of adjacent sides,
e.g. $A B$ and $B C$

M1
Show that $A B C D$ has a pair of adjacent sides that are equal A1
OR: Calculate scalar product $\overrightarrow{A C} \cdot \overrightarrow{B D}$ or equivalent M1
Show that $A B C D$ has perpendicular diagonals A1
(ii) EITHER: State $a+2 b+3 c=0$ or $2 a+b-2 c=0$

B1
Obtain two relevant equations and solve for one ratio, e.g. $a: b$ M1
Obtain $a: b: c=-7: 8:-3$, or equivalent A1
Substitute coordinates of a relevant point in $-7 x+8 y-3 z=d$, and evaluate M1
Obtain answer $-7 x+8 y-3 z=29$, or equivalent A1
OR1:Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \times(2 \mathbf{i}+\mathbf{j}-2 \mathbf{k})$

M1
Obtain two correct components of the product A1
Obtain correct product, e.g. $-7 \mathbf{i}+8 \mathbf{j}-3 \mathbf{k} \quad$ A1
Substitute coordinates of a relevant point in $-7 x+8 y-3 z=d$ and evaluate $d \quad$ M1
Obtain answer $-7 x+8 y-3 z=29$ or equivalent A1
OR2:Attempt to form a 2-parameter equation with relevant vectors M1
State a correct equation, e.g. $\mathbf{r}=2 \mathbf{i}+5 \mathbf{j}-\mathbf{k}+\lambda(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})+\mu(2 \mathbf{i}+\mathbf{j}-2 \mathbf{k}) \quad$ A1
State 3 equations in x, y, z, λ and $\mu \quad$ A1
Eliminate λ and $\mu \quad$ M1
Obtain answer $-7 x+8 y-3 z=29$, or equivalent A1
OR3:Using a relevant point and relevant direction vectors, form a determinant equation for the plane
State a correct equation, e.g. $\left|\begin{array}{ccc}x-2 & y-5 & z+1 \\ 1 & 2 & 3 \\ 2 & 1 & -2\end{array}\right|=0$
Attempt to expand the determinant
Obtain correct values of two cofactors A1
Obtain answer $-7 x+8 y-3 z=29$, or equivalent

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	32

10 (a) EITHER: Use quadratic formula to solve for z M1
Use $\mathrm{i}^{2}=-1$
Obtain a correct answer in any form, simplified as far as $(-2 \pm \mathrm{i} \sqrt{8}) / 2 \mathrm{i} \quad$ A1
Multiply numerator and denominator by i, or equivalent M1
Obtain final answers $\sqrt{2}+\mathrm{i}$ and $-\sqrt{2}+\mathrm{i}$ A1
OR: Substitute $x+\mathrm{i} y$ and equate real and imaginary parts to zero M1
Use $\mathrm{i}^{2}=-1 \quad$ M1
Obtain $-2 x y+2 x=0$ and $x^{2}-y^{2}+2 y-3=0$, or equivalent A1
Solve for x and $y \quad$ M1
Obtain final answers $\sqrt{2}+\mathrm{i}$ and $-\sqrt{2}+\mathrm{i} \quad$ A1
(b) (i) EITHER: Show the point representing $4+3 i$ in relatively correct position

B1 Show the perpendicular bisector of the line segment joining this point to the origin

B1 ${ }^{\wedge}$
$O R$: Obtain correct Cartesian equation of the locus in any form, e.g.
$8 x+6 y=25$
B1
Show this line
B1 ${ }^{\wedge}$
[This f.t. is dependent on using a correct method to determine the equation.]
(ii) State or imply the relevant point is represented by $2+1.5 \mathrm{i}$ or is at $(2,1.5)$

Obtain modulus 2.5
Obtain argument 0.64 (or 36.9°) (allow decimals in [0.64, 0.65] or [36.8, 36.9])

B1 ${ }^{\wedge}$

