Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	31

1 (i) EITHER: State or imply non-modular equation $(2(x-1))^{2}=(3 x)^{2}$, or pair of linear equations
$2(x-1)= \pm 3 x$
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations
Obtain answers $x=-2$ and $x=\frac{2}{5}$
OR: Obtain answer $x=-2$ by inspection or by solving a linear equation
Obtain answer $x=\frac{2}{5}$ similarly
(ii) Use correct method for solving an equation of the form $5^{x}=a$ or $5^{x+1}=a$, where $a>0$

2 Integrate by parts and reach $a x \mathrm{e}^{-2 x}+b \int \mathrm{e}^{-2 x} \mathrm{~d} x$
Obtain $-\frac{1}{2} x \mathrm{e}^{-2 x}+\frac{1}{2} \int \mathrm{e}^{-2 x} \mathrm{~d} x$, or equivalent
Complete the integration correctly, obtaining $-\frac{1}{2} x \mathrm{e}^{-2 x}-\frac{1}{4} \mathrm{e}^{-2 x}$, or equivalent
Use limits $x=0$ and $x=\frac{1}{2}$ correctly, having integrated twice
Obtain answer $\frac{1}{4}-\frac{1}{2} \mathrm{e}^{-1}$, or exact equivalent

3 Correctly restate the equation in terms of $\sin \theta$ and $\cos \theta \quad$ B1
Using Pythagoras obtain a horizontal equation in $\cos \theta$
Reduce the equation to a correct quadratic in $\cos \theta$, e.g. $3 \cos ^{2} \theta-\cos \theta-2=0 \quad$ A1
Solve a 3 -term quadratic for $\cos \theta$
Obtain answer $\theta=131.8^{\circ}$ only
[Ignore answers outside the given interval.]
$\begin{array}{ll}\text { Separate variables and attempt integration of at least one side } & \text { M1* } \\ \text { Obtain term } \ln y & \text { A1 }\end{array}$
Obtain terms $\ln x-x^{2}$
Use $x=1$ and $y=2$ to evaluate a constant, or as limits DM1*
Obtain correct solution in any form, e.g. $\ln y=\ln x-x^{2}+\ln 2+1 \quad$ A1
Obtain correct expression for y, free of logarithms, i.e. $y=2 x \exp \left(1-x^{2}\right) \quad$ A1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	31

5 Use product rule M1
Obtain correct derivative in any form, e.g. $\cos x \cos 2 x-2 \sin x \sin 2 x$ A1
Equate derivative to zero and use double angle formulae M1
Remove factor of $\cos x$ and reduce equation to one in a single trig function M1
Obtain $6 \sin ^{2} x=1,6 \cos ^{2} x=5$ or $5 \tan ^{2} x=1$
Solve and obtain $x=0.421$
[Alternative: Use double angle formula M1.Use chain rule to differentiate M1. Obtain correct derivative
e.g. $\cos \theta-6 \sin ^{2} \theta \cos \theta$ A1, then as above.]

6 (i) Make recognizable sketch of a relevant graph
(ii) State $x=\frac{1}{2} \ln (25 / x)$

Rearrange this in the form $5 \mathrm{e}^{-x}=\sqrt{x}$

(iii) Use the iterative formula correctly at least once

Obtain final answer 1.43
Show sufficient iterations to 4 d.p. to justify 1.43 to 2 d.p., or show there is a sign change in the interval (1.425, 1.435)

7 (i) State or imply $6 x y+3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $3 x^{2} y$
State $3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{3}
Equate attempted derivative of the LHS to zero and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
Obtain the given answer
(ii) Equate numerator to zero M1*
Obtain $x=2 y$, or equivalent A1
Obtain an equation in x or y DM1*
Obtain the point $(-2,-1)$ A1
State the point $(0,1.44)$ B1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	31

8 (i) State or imply the form $\frac{A}{x+1}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}$
Use a correct method to determine a constant
Obtain one of the values $A=1, B=3, C=12$
Obtain a second value
Obtain a third value
[Mark the form $\frac{A}{x+1}+\frac{D x+E}{(x-3)^{2}}$, where $A=1, D=3, E=3$, B1M1A1A1A1 as above.]
(ii) Use correct method to find the first two terms of the expansion of $(x+1)^{-1},(x-3)^{-1},\left(1-\frac{1}{3} x\right)^{-1}$,
$(x-3)^{-2}$, or $\left(1-\frac{1}{3} x\right)^{-2}$
Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction

$$
\mathbf{A} \mathbf{1}^{\wedge}+\mathbf{A} \mathbf{1} \mathbf{v}^{\wedge}+\mathbf{A} \mathbf{1}^{\wedge}
$$

Obtain final answer $\frac{4}{3}-\frac{4}{9} x+\frac{4}{3} x^{2}$, or equivalent

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	31

9 (i) EITHER: Obtain a vector parallel to the plane, e.g. $\overrightarrow{A B}=\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}$

Use scalar product to obtain an equation in a, b, c e.g. $a-2 b-3 c=0, a+b-c=0$, or $3 b+2 c=0$ M1

State two correct equations A1
Solve to obtain ratio $a: b: c$ M1
Obtain $a: b: c=5:-2: 3 \quad$ A1
Obtain equation $5 x-2 y+3 z=5$, or equivalent A1
$O R 1$: Substitute for two points, e.g. A and B, and obtain $a+3 b+2 c=d$ and
$2 a+b-c=d$
Substitute for another point, e.g. C, to obtain a third equation and eliminate one unknown entirely from all three equations
Obtain two correct equations in three unknowns, e.g. in $a, b, c \quad$ A1
Solve to obtain their ratio M1
Obtain $a: b: c=5:-2: 3, a: c: d=5: 3: 5, a: b: d=5:-2: 5$, or $b: c: d=-2: 3: 5$
Obtain equation $5 x-2 y+3 z=5$, or equivalent A1)
OR2: Obtain a vector parallel to the plane, e.g. $\overrightarrow{A C}=\mathbf{i}+\mathbf{j}-\mathbf{k}$
Obtain a second such vector and calculate their vector product, e.g.
$(\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}) \times(\mathbf{i}+\mathbf{j}-\mathbf{k})$
M1
Obtain two correct components of the product A1
Obtain correct answer e.g. $5 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k} \quad$ A1
Substitute in $5 x-2 y+3 z=d$ to find $d \quad$ M1
Obtain equation $5 x-2 y+3 z=5$, or equivalent \quad A1)

OR3: Obtain a vector parallel to the plane, e.g. $\overrightarrow{B C}=3 \mathbf{j}+2 \mathbf{k}$
Obtain a second such vector and form correctly a 2-parameter equation for the plane M1
Obtain a correct equation, e.g. $\mathbf{r}=\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}-3 \mathbf{k})+\mu(3 \mathbf{j}+2 \mathbf{k}) \quad$ A1
State three correct equations in $x, y, z, \lambda, \mu \quad$ A1
Eliminate λ and $\mu \quad$ M1
Obtain equation $3 x-2 y+3 z=5$, or equivalent A1)
(ii) Correctly form an equation for the line through D parallel to $O A \quad$ M1

Obtain a correct equation e.g. $\mathbf{r}=-3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \quad$ A1
Substitute components in the equation of the plane and solve for $\lambda \quad$ M1
Obtain $\lambda=2$ and position vector $-\mathbf{i}+7 \mathbf{j}+6 \mathbf{k}$ for $P \quad$ A1
Obtain the given answer correctly

10 (a) Square $x+$ i y and equate real and imaginary parts to 7 and $-6 \sqrt{2}$ respectively
Obtain equations $x^{2}-y^{2}=7$ and $2 x y=-6 \sqrt{2}$
Eliminate one variable and find an equation in the other M1
Obtain $x^{4}-7 x^{2}-18=0$ or $y^{4}+7 y^{2}-18=0$, or 3-term equivalent A1
Obtain answers $\pm(3-i \sqrt{2})$

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	31

(b) (i) Show point representing $1+2 \mathrm{i}$ B1
Show circle with radius 1 and centre $1+2 \mathrm{i}$ B1
Show a half line from the point representing 1 B1
Show line making the correct angle with the real axis B1
(ii) State or imply the relevance of the perpendicular from $1+2 i$ to the line M1
Obtain answer $\sqrt{2}-1$ (or 0.414) A1

