Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	23

1 Use power law for logarithms correctly at least once M1
Obtain $3 x \log 5=4 y \log 7$ or $3 x \ln 5=4 y \ln 7$ or equivalent
Obtain 1.612

2 (i) Carry out division, or equivalent, at least as far as quotient $2 x+k$
M1
Obtain quotient $2 x-3$
A1
Obtain remainder $-25 x+18$
(ii) Subtract remainder of form $a x+b(a b \neq 0)$ from $2 x^{3}-7 x^{2}-9 x+3$ or multiply their quotient by $x^{2}-2 x+5$
Obtain $p=16$ and $q=-15$

3 (i) State or imply non-modular equation $(3 u+1)^{2}=(2 u-5)^{2}$ or corresponding pair of linear equations
Attempt solution of 3-term quadratic equation or of 2 linear equations
Obtain -6 and $\frac{4}{5}$
(ii) Evaluate $\tan ^{-1} \frac{1}{k}$ for at least one of their solutions k from part (i)

Obtain 0.896

4 (i) State $\sin \theta \cos 60+\cos \theta \sin 60+\sin \theta \cos 120+\cos \theta \sin 120$
Use $\sin 60=\sin 120=\frac{1}{2} \sqrt{3}$ and $\cos 60=\frac{1}{2}, \cos 120=-\frac{1}{2}$
Confirm result $\sqrt{3} \cos \theta$, dependent on $* \mathrm{~B} * \mathrm{~B}$
$\begin{array}{lr}\text { (ii) (a) } \cos 45 \text { seen } & * \text { B1 } \\ & \text { State } \sqrt{\frac{3}{2}} \text { or } \frac{1}{2} \sqrt{6} \text { or exact equivalent, dependent } * \mathrm{~B}\end{array}$ DB1
(b) Carry out correct process to find at least one value of θ from $\cos ^{2} \theta=k$

Obtain 40.6
Obtain 139.4

5 (i) Use product rule to obtain form $k_{1} \mathrm{e}^{\frac{1}{3} x}+k_{2} x \mathrm{e}^{\frac{1}{3} x}$
Obtain correct $6 \mathrm{e}^{\frac{1}{3} x}+2 x \mathrm{e}^{\frac{1}{3} x}$
Equate first derivative to 40 and obtain equation without e present, dep ${ }^{*} \mathrm{M}$ DM1
Confirm $p=3 \ln \frac{20}{p+3}$ or $x=3 \ln \frac{20}{x+3}$
(ii) Consider sign of $p-3 \ln \frac{20}{p+3}$ at 3.3 and 3.5 or equivalent

Complete argument correctly with appropriate calculations
(iii) Carry out iterative process correctly at least once

Obtain final answer 3.412
Show sufficient iterations to justify accuracy to 3 dp or show sign change in interval (3.4115, 3.4125)

DB1

M1
A1
A1
*M1
A1 M1

B1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	23

6 (a) Obtain integrand $2 \mathrm{e}^{-2 x}+\frac{1}{2} \mathrm{e}^{-x} \quad$ B1
Obtain integral of form $k_{1} \mathrm{e}^{-2 x}+k_{2} \mathrm{e}^{-x} \quad$ M1
Obtain answer $-\mathrm{e}^{-2 x}-\frac{1}{2} \mathrm{e}^{-x}$, condoning absence of $+c$ A1
(b) Integrate to obtain $\frac{1}{2} \ln (2 x+5) \quad$ B1

Show correct use of $p \ln k=\ln k^{p}$ law at least once M1
Show correct use of $\ln m-\ln n=\ln \frac{m}{n}$ law M1
Obtain $\ln \frac{5}{3}$ A1
(c) State or imply correct ordinates $\log 2, \log 5, \log 8$ or decimal equivalents

Use correct formula, or equivalent, correctly with $h=3$ and 3 ordinates M1
Obtain answer 3.9 with no errors seen

7 (i) State $\frac{\mathrm{d} x}{\mathrm{~d} t}=\sin t$ and $\frac{\mathrm{d} \nu}{\mathrm{d} t}=-6 \sin 2 t$
Use $\sin 2 t=2 \sin t \cos t$ B1
Form expression for $\frac{d y}{d x}$ in terms of t M1
Confirm $-12 \cos t$
(ii) Identify $\frac{1}{2} \pi$ as value of t

Obtain (2,-2)
(iii) Identify $\cos 2 t=-\frac{1}{3} \quad$ B1

Attempt to find value of t (or of $\cos t)$ for at least one of the two points M1
Obtain 0.955 (or $\frac{1}{\sqrt{3}}$) or 2.186 (or $-\frac{1}{\sqrt{3}}$) A1
Obtain $-\frac{12}{\sqrt{3}}$ or $-4 \sqrt{3}$ or -6.93 and $\frac{12}{\sqrt{3}}$ or $4 \sqrt{3}$ or 6.93

