Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	21

1 Obtain first derivative of form $k_{1} \mathrm{e}^{4 x}+\frac{k_{2}}{2 x+3} \quad$ M1
Obtain correct $12 \mathrm{e}^{4 x}-\frac{12}{2 x+3}$
Obtain 8

2 Use $\cot \theta=1 \div \tan \theta$
Form equation involving $\tan \theta$ only and with no denominators involving θ
Obtain $\tan ^{2} \theta=\frac{2}{7}$
Obtain 28.1
Obtain 151.9
Allow other valid methods

3 Rearrange to $3 \mathrm{e}^{2 x}-14 \mathrm{e}^{x}+8=0$ or equivalent involving substitution
Solve quadratic equation in e^{x} to find two values of e^{x}
Obtain $\frac{2}{3}$ and 4
Use natural logarithms to solve equation of form $\mathrm{e}^{x}=k$ where $k>0$ dep on DM1
Allow M mark if left in exact form M1
Obtain -0.405 A1
Obtain 1.39
A1

4 (i) Carry out division, or equivalent, at least as far as $8 x^{2}+k x$
Obtain correct quotient $8 x^{2}+14 x-15$ A1

Confirm remainder is 5
(ii) State or imply expression is $(x+2)(\ldots$ their quadratic quotient...)

B1^
Attempt factorisation of their quadratic quotient M1
Obtain $(x+2)(2 x+5)(4 x-3)$
(iii) State $\pm \frac{3}{4}$ and no others, following their 3 linear factors

B1 ${ }^{\wedge}$

5 (i) Obtain $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \sec ^{2} \theta$ and $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=6 \cos 2 \theta$ B1

Use $\cos 2 \theta=2 \cos ^{2} \theta-1$ or equivalent B1
Form expression for $\frac{d y}{d x}$ in terms of $\cos \theta$ M1

Confirm $6 \cos ^{4} \theta-3 \cos ^{2} \theta$ with no errors seen
$\begin{array}{ll}\text { (ii) Equate first derivative to zero and obtain at least } \cos \theta= \pm \frac{1}{\sqrt{2}} & \text { B1 }\end{array}$
Obtain $\theta=\frac{1}{4} \pi$ or equivalent
Obtain (2, 3)
(iii) State or imply $\theta=\frac{1}{3} \pi$ or equivalent

Obtain $-\frac{3}{8}$ or equivalent only

A1

B1
B1
[4]

B1

B1

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	21

6 (i) Use quotient rule or equivalent
Obtain $\frac{6 x\left(x^{2}+4\right)-6 x^{3}}{\left(x^{2}+4\right)^{2}}$ or equivalent
Equate first derivative to $\frac{1}{2}$ and remove algebraic denominators dep on $* \mathrm{M} 1$
Obtain $48 p=p^{4}+8 p^{2}+16$ or $48 x=x^{4}+8 x^{2}+16$ or equivalent A1
Confirm given result $p=\sqrt{\frac{48 p-16}{p^{2}+8}}$
(ii) Consider sign of $p-\sqrt{\frac{48 p-16}{p^{2}+8}}$ at 2 and 3 or equivalent

Complete argument correctly with appropriate calculations
A1
(iii) Carry out iteration process correctly at least once

Obtain final answer 2.728
Show sufficient iterations to justify accuracy to 4 sf or show sign change in interval $(2.7275,2.7285)$
$\begin{array}{lr}\text { (a) Rewrite integrand as } \sec ^{2} 2 x+\cos ^{2} 2 x & \text { B1 } \\ \text { Express } \cos ^{2} 2 x \text { in form } k_{1}+k_{2} \cos 4 x & \text { M1 } \\ \text { State correct } \frac{1}{2}+\frac{1}{2} \cos 4 x & \text { A1 } \\ \text { Integrate to obtain at least terms involving } \tan 2 x \text { and } \sin 4 x & \text { M1 } \\ \text { Obtain } \frac{1}{2} \tan 2 x+\frac{1}{2} x+\frac{1}{8} \sin 4 x, \text { condoning absence of }+c & \text { A1 }\end{array}$
(b) Integrate to obtain $2 x+2 \ln (3 x-2)$

Show correct use of $p \ln k=\ln k^{p}$ law at least once, must be using $\ln (3 x-2) \quad$ M1
Show correct use of $\ln m-\ln n=\ln \frac{m}{n}$ law, must be using $\ln (3 x-2) \quad$ M1
$\begin{array}{ll}\text { Use or imply } 20=\ln \left(\mathrm{e}^{20}\right) & \text { B1 }\end{array}$
Obtain $\ln \left(16 \mathrm{e}^{20}\right)$

