—			<u>9709_s</u>	16 <u></u> m	s_21
P	age 4	Mark Scheme	Syllabus	Pap	er
		Cambridge International AS/A Level – May/June 2016	9709	21	
1	Obta	in first derivative of form $k_1 e^{4x} + \frac{k_2}{2x+3}$		M1	
	Obta	$\lim \text{ correct } 12e^{4x} - \frac{12}{2x+3}$		A1	
	Obta	uin 8		A1	[3]
2	Use	$\cot \theta = 1 \div \tan \theta$		B 1	
	Forr Obta	in equation involving $\tan \theta$ only and with no denominators involving θ $\sin \tan^2 \theta = \frac{2}{7}$		M1 A1	
	Obta Obta	uin 28.1 uin 151.9		A1 A1	[5]
	Allo	w other valid methods			[-]
3	Rea	range to $3e^{2x} - 14e^x + 8 = 0$ or equivalent involving substitution		B 1	
	Solv Obta	e quadratic equation in e^x to find two values of e^x $\sin \frac{2}{3}$ and 4		*M1 A1	
	Use	natural logarithms to solve equation of form $e^x = k$ where $k > 0$ dep on	1	DM1	
	Allo Obta	w M mark if left in exact form -0.405		M1 A1	
	Obta	in 1.39		A1	[6]
4	(i)	Carry out division, or equivalent, at least as far as $8x^2 + kx$		M1	
		Obtain correct quotient $8x^2 + 14x - 15$ Confirm remainder is 5		A1 A1	[3]
	(ii)	State or imply expression is $(x+2)(\dots$ their quadratic quotient)		B1√	
		Attempt factorisation of their quadratic quotient Obtain $(x+2)(2x+5)(4x-3)$		M1 A1	[3]
	(iii)	State $\pm \frac{3}{4}$ and no others, following their 3 linear factors		B 1√	[1]
5	(i)	Obtain $\frac{dx}{d\theta} = 2 \sec^2 \theta$ and $\frac{dy}{d\theta} = 6 \cos 2\theta$		B1	
		Use $\cos 2\theta = 2\cos^2 \theta - 1$ or equivalent		B1	
		Form expression for $\frac{dy}{dx}$ in terms of $\cos\theta$ Confirm $6\cos^4\theta - 3\cos^2\theta$ with no errors seen		M1 A1	[4]
	(;;)	Equate first derivative to zero and obtain at least $\cos \theta = \pm \frac{1}{2}$		P1	[']
	(11)	Obtain $\theta = \frac{1}{4}\pi$ or equivalent		B1	
		Obtain (2, 3)		B 1	[3]
	(iii)	State or imply $\theta = \frac{1}{3}\pi$ or equivalent		B 1	
		Obtain $-\frac{3}{8}$ or equivalent only		B 1	[2]

		1	9709_s	16_m;	s <u>2</u> 1
Page 5		Mark Scheme	Syllabus	Paper	
		Cambridge International AS/A Level – May/June 2016	9709	21	
6	(i)	Use quotient rule or equivalent		*M1	
		Obtain $\frac{6x(x^2+4)-6x^3}{(x^2+4)^2}$ or equivalent		A1	
		Equate first derivative to $\frac{1}{2}$ and remove algebraic denominators dep on *M1		DM1	
		Obtain $48p = p^4 + 8p^2 + 16$ or $48x = x^4 + 8x^2 + 16$ or equivalent		A1	
		Confirm given result $p = \sqrt{\frac{48p - 16}{p^2 + 8}}$		A1	[5]
	(ii)	Consider sign of $p - \sqrt{\frac{48p - 16}{p^2 + 8}}$ at 2 and 3 or equivalent		M1	
		Complete argument correctly with appropriate calculations		A1	[2]
	(iii)	Carry out iteration process correctly at least once Obtain final answer 2.728		M1 A1	
		in interval (2.7275, 2.7285)		B 1	[3]
7	(a)	Rewrite integrand as $\sec^2 2x + \cos^2 2x$		B 1	
		Express $\cos^2 2x$ in form $k_1 + k_2 \cos 4x$		M1	
		State correct $\frac{1}{2} + \frac{1}{2}\cos 4x$		A1	
		Integrate to obtain at least terms involving $\tan 2x$ and $\sin 4x$		M1	
		Obtain $\frac{1}{2}\tan 2x + \frac{1}{2}x + \frac{1}{8}\sin 4x$, condoning absence of $+c$		A1	[5]
	(b)	Integrate to obtain $2x + 2\ln(3x - 2)$		B 1	
		Show correct use of $p \ln k = \ln k^p$ law at least once, must be using $\ln(3x-2)$		M1	
		Show correct use of $\ln m - \ln n = \ln \frac{m}{n}$ law, must be using $\ln(3x - 2)$		M1	

B1

A1

[5]

Use or imply $20 = \ln(e^{20})$

Obtain ln(16e²⁰)