Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	11

1	$\begin{aligned} & \left(x-\frac{3}{2 x}\right)^{6} \\ & \text { Term is }{ }^{6} \mathrm{C}_{3} \times x^{3} \times\left(\frac{-3}{2 x}\right)^{3} \\ & \rightarrow-67.5 \text { oe } \end{aligned}$	B1 B1 B1	B1 for Bin coeff. B1 for rest.
2	$\begin{aligned} & 3 \sin ^{2} \theta=4 \cos \theta-1 \\ & \mathrm{Uses} s^{2}+c^{2}=1 \\ & \rightarrow 3 c^{2}+4 c-4(=0) \\ & \left(\rightarrow c=\frac{2}{3} \text { or }-2\right) \\ & \rightarrow \theta=48.2^{\circ} \text { or } 311.8^{\circ} \\ & 0.841,5.44 \text { rads, } \mathbf{A 1} \text { only } \\ & (0.268 \pi, 1.73 \pi) \end{aligned}$	M1 A1 A1 A1 $\sqrt{ }$	Equation in $\cos \theta$ only. All terms on one side of (=) For $360^{\circ}-1$ st answer.
3	$\begin{aligned} & x=\frac{12}{y^{2}}-2 . \\ & \operatorname{Vol}=(\pi) \times \int x^{2} \mathrm{~d} y \\ & \rightarrow\left[\frac{-144}{3 y^{3}}+4 y+\frac{48}{y}\right] \end{aligned}$ Limits 1 to 2 used $\rightarrow 22 \pi$	M1 $3 \times$ A1 A1	Ignore omission of π at this stage Attempt at integration Un-simplified only from correct integration
4 (i) (ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=2-8(3 x+4)^{-1 / 2} \\ & \left(x=0, \rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2\right) \\ & \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t} \rightarrow-0.6 \\ & y=\{2 x\}\left\{-\frac{8 \sqrt{3 x+4}}{\frac{1}{2}} \div 3\right\}(+c) \\ & x=0, y=\frac{4}{3} \rightarrow c=12 . \end{aligned}$	M1A1 [2] B1 B1 M1 A1	Ignore notation. Must be $\frac{\mathrm{d} y}{\mathrm{~d} x} \times 0.3$ No need for $+c$. Uses x, y values after \int with c
5 (i)	$\begin{aligned} & A=2 y \times 4 x(=8 x y) \\ & 10 y+12 x=480 \\ & \rightarrow A=384 x-9.6 x^{2} \end{aligned}$	B1 B1 B1 [3]	answer given

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	11

(ii)	$\begin{aligned} & \frac{\mathrm{d} A}{\mathrm{~d} x}=384-19.2 x \\ & =0 \text { when } x=20 \end{aligned}$ $\rightarrow x=20, y=24 .$ Uses $x=-\frac{b}{2 a}=\frac{-384}{-19.2}=20$, M1, A1 $y=24, \mathrm{~A} 1$ From graph: B1 for $x=20, \mathbf{M 1}, \mathbf{A 1}$ for $y=24$	B1 M1 A1 [3]	Sets to 0 and attempt to solve oe Might see completion of square Needs both x and y Trial and improvement B3.
$6 \quad$ (a) (b) (i) (ii)	$y=2 x^{2}-4 x+8$ Equates with $y=m x$ and selects a, b, c Uses $b^{2}=4 a c$ $\rightarrow m=4 \text { or }-12 \text {. }$ $\mathrm{f}(x)=x^{2}+a x+b$ Eqn of form $(x-1)(x-9)$ $\rightarrow a=-10, b=9$ (or using 2 sim eqns M1 A1) Calculus or $x=\frac{1}{2}(1+9)$ by symmetry $\rightarrow(5,-16)$	M1 M1 A1 [3] M1 A1 [2] M1 A1 [2]	Equate + solution or use of $\mathrm{d} y / \mathrm{d} x$ Use of discriminant for both. Any valid method allow $(x+1)(x+9)$ for M1 must be stated Any valid method
$7 \quad$ (i) (ii)	$\begin{align*} & C D=r \cos \theta, B D=r-r \sin \theta \text { oe } \\ & \text { Arc } C B=r\left(\frac{1}{2} \pi-\theta\right) \text { oe } \\ & \rightarrow P=r \cos \theta+r-r \sin \theta+r\left(\frac{1}{2} \pi-\theta\right) \mathrm{oe} \\ & \text { Sector }=\frac{1}{2} \cdot 5^{2} \cdot\left(\frac{1}{2} \pi-0.6\right) \quad(12.135) \tag{12.135}\\ & \text { Triangle }=\frac{1}{2} \cdot 5 \cos 0.6 .5 \sin 0.6(5.825) \\ & \rightarrow \text { Area }=6.31 \\ & \left(\text { or } \frac{1}{4} \text { circle }- \text { triangle }- \text { sector }\right) \end{align*}$	B1 B1 B1 B1^ [4] M1 M1 A1	allow degrees but not for last B1 \checkmark sum - assuming trig used Uses $\frac{1}{2} r^{2} \theta$ Uses $\frac{1}{2} b h$ with some use of trig.

8	$\begin{aligned} & y=3 x-\frac{4}{x} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3+\frac{4}{x^{2}} \\ & m \text { of } A B=4 \\ & \text { Equate } \rightarrow x= \pm 2 \\ & \rightarrow C(2,4) \text { and } D(-2,-4) \end{aligned}$ $\rightarrow M(0,0)$ or stating M is the origin m of $C D=2$ Perpendicular gradient $\left(=-\frac{1}{2}\right)$ $\rightarrow y=-\frac{1}{2} x$	B1 B1 M1 A1 B1 $\sqrt{ }$ M1 A1 [7]	Equating + solution. \checkmark on their C and D Use of $m_{1} m_{2}=-1$, must use $\mathrm{m}_{C D}$ (not m = 4)
9 (a) (b) (i) (ii)	$\begin{aligned} & a=50, a r^{2}=32 \\ & \rightarrow r=\frac{4}{5} \text { (allow }-\frac{4}{5} \text { for M mark) } \\ & \rightarrow S_{\infty}=250 \end{aligned}$ $2 \sin x, 3 \cos x,(\sin x+2 \cos x)$. $3 c-2 s=(s+2 c)-3 c$ (or uses $a, a+d, a+2 d$) $\rightarrow 4 c=3 s \rightarrow t=\frac{4}{3}$ SC uses $t=\frac{4}{3}$ to show $u_{1}=\frac{8}{5}, u_{2}=\frac{9}{5}, u_{3}=\frac{10}{5}, \mathbf{B 1}$ only $\rightarrow c=\frac{3}{5}, s=\frac{4}{5}$ or calculator $x=53.1^{\circ}$ $\rightarrow a=1.6, d=0.2$ $\rightarrow S_{20}=70$	B1 M1 A1 [3] M1 M1 A1 [3] M1 M1 A1 [3]	seen or implied Finding r and use of correct S_{∞} formula Only if $\|\mathrm{r}\|<1$ Links terms up with AP, needs one expression for d. Arrives at $t=k$ ag Correct method for both a and d. (Uses S_{n} formula)
10 (i)	$\begin{aligned} & \overrightarrow{O A}=\left(\begin{array}{c} 2 \\ 1 \\ -2 \end{array}\right), \overrightarrow{O B}=\left(\begin{array}{c} 5 \\ -1 \\ k \end{array}\right), \overrightarrow{O C}=\left(\begin{array}{c} 2 \\ 6 \\ -3 \end{array}\right) \\ & 10-1-2 k=0 \rightarrow k=4 \frac{1}{2} \end{aligned}$	M1 A1 [2]	Use of scalar product $=0$.

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2016	9709	11

\begin{tabular}{|c|c|c|c|}
\hline (ii)

(iii) \& $$
\begin{aligned}
& \overrightarrow{A B}=\left(\begin{array}{c}
3 \\
-2 \\
k+2
\end{array}\right), \\
& |\overrightarrow{O C}|=7 \text { (seen or implied) } \\
& 3^{2}+(-2)^{2}+(k+2)^{2}=49 \\
& \rightarrow k=4 \text { or }-8 \\
& |\overrightarrow{O A}|=3 \\
& \overrightarrow{O D}=3 \overrightarrow{O A}=\left(\begin{array}{c}
6 \\
3 \\
-6
\end{array}\right) \text { and } \overrightarrow{O E}=2 \\
& \overrightarrow{O C}=\left(\begin{array}{c}
4 \\
12 \\
-6
\end{array}\right) \\
& \overrightarrow{D E}=\overrightarrow{O E}-\overrightarrow{O D}=\left(\begin{array}{c}
-2 \\
9 \\
0
\end{array}\right),
\end{aligned}
$$

\[
\rightarrow Magnitude of \sqrt{ } 85

\] \& | B1 |
| :--- |
| B1 |
| M1 A1 |
| [4] |
| M1 A1 |
| M1 |
| A1 |
| [4] | \& | Correct method. Both correct. |
| :--- |
| Condone sign error in $\overrightarrow{A B}$ |
| Scaling from magnitudes/unit vector - oe. |
| Correct vector subtraction. | \\

\hline | 11 (i) |
| :--- |
| (ii) | \& \[

$$
\begin{aligned}
& \mathrm{f}: x \rightarrow 4 \sin x-1 \text { for }-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2} \\
& \text { Range }-5 \leqslant \mathrm{f}(x) \leqslant 3
\end{aligned}
$$
\]

\[
4 s-1=0 \rightarrow s=\frac{1}{4} \rightarrow x=0.253

\] \& | B1 |
| :--- |
| B1 |
| [2] |
| M1 A1 | \& | -5 and 3 |
| :--- |
| Correct range |
| Makes $\sin x$ subject. Degrees M1 A0, (14.5 ${ }^{\circ}$) | \\

\hline \& $$
x=0 \rightarrow y=-1
$$ \& B1

[3] \& \\

\hline (iii) \& \& | $\begin{aligned} & \text { B1 } \sqrt{\text { B1 }} \end{aligned}$ |
| :--- |
| [2] | \& Shape from their range in (i) Flattens, curve. \\

\hline (iv) \& | range $-\frac{1}{2} \pi \leqslant \mathrm{f}^{-1}(x) \leqslant \frac{1}{2} \pi$ |
| :--- |
| domain $-5 \leqslant x \leqslant 3$ |
| Inverse $\mathrm{f}^{-1}(x)=\sin ^{-1}\left(\frac{x+1}{4}\right)$ | \& | B1 |
| :--- |
| B1』 |
| M1 A1 |
| [4] | \& | \checkmark on part (i) (only for 2 numerical values) |
| :--- |
| Correct order of operations | \\

\hline
\end{tabular}

