Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	73

1 (i)	Eg: Only students who use canteen The five will probably be friends	$\begin{array}{ll} \text { B1 } \\ \text { B1 } \end{array}$	or any reason that some are excluded B1 each sensible reason must be in context
(ii)	2-digits ignore > 82 (anything too big) Ignore repeats	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } \\ \text { B1 } & {[3]} \end{array}$	
		[Total 5]	
2 (i)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { correct })=\frac{1}{8} \\ & \mathrm{H}_{1}: \mathrm{P}(\text { correct })>\frac{1}{8} \end{aligned}$	B1 [1]	$\begin{array}{r\|} \text { Or } H_{0} \mathrm{p}=1 / 8 \\ \mathrm{H}_{1} \mathrm{p} \end{array}>1 / 8$
(ii)	$\begin{aligned} & 1-\left(\left(\frac{1}{8}\right)^{10}+10\left(\frac{1}{8}\right)^{9}\left(\frac{7}{8}\right)+{ }^{10} \mathrm{C}_{2}\left(\frac{1}{8}\right)^{8}\left(\frac{7}{8}\right)^{2}\right) \\ & =0.120(3 \mathrm{sf}) \text { or } 0.119 \end{aligned}$	M1 A1 A1 [3]	M1 for attempt at correct expression accept 1 error only, e.g. 1 term extra, omitted or wrong, or omit " $1-$ " or incorrect p / q Correct expression Note Use of Poisson in (ii) could score M1 only for expression $1-\mathrm{P}(0,1,2) \lambda=1.25$
(iii)	12\%	B1f [1]	$\mathrm{ft} \mathrm{their} \mathrm{(ii)} \mathrm{Must} \mathrm{be} \mathrm{a} \mathrm{probability}$
		Total 5	
3 (i)	$\begin{aligned} & \operatorname{Var}\left(p_{s}\right)=\frac{0.22 \times(1-0.22)}{100} \\ & \left.0.22 \pm z{\sqrt{'^{\frac{429}{250000}}} \cdot}_{250000} \text { or } 0.001716\right) \\ & z=2.17 \text { or } 2.168 / 9 \text { or } 2.171 \\ & 0.13(0) \text { to } 0.31(0)(2 \mathrm{sf}) \end{aligned}$	M1 M1 B1 A1 [4]	pq/100 Expression of correct form with their variance Any z (must be a z value) accept one side only Seen Must be an interval
(ii)	$\begin{aligned} & { }^{\prime} 2 ’ \times(1-0.97) \times 0.97 \\ & =0.0582 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
		Total 6	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	73

4 (i)	$\begin{aligned} & \left(\frac{1508}{50}\right)=30.16(30.2) \\ & \frac{50}{49}\left(\frac{51825}{50}-\left({ }^{\left(30.16^{\prime 2}\right)}\right)\right. \\ & =129(3 \mathrm{sf}) \text { Or } 130 \end{aligned}$	B1 M1 A1 [3]	Allow any form (129.46367)
(ii)	$\begin{aligned} & \left(1.5 \times ‘ 30.16^{\prime}+10\right) \\ & =55.24 \\ & \left(1.5^{2} \times{ }^{\prime} 129 \ldots . .^{\prime}\right) \\ & =291(3 \mathrm{sf}) \end{aligned}$	B1ft M1 A1ft [3]	ft their 30.16 $1.5^{2} \times$ their (129) with nothing added at any stage Allow 290
		Total 6	
5 (i)	Cables broken or not all cables can be accessed oe or Too many cables oe or too time consuming oe	B1 [1]	e.g. previous days' stocks may have gone
(ii)	H_{0} : Pop mean brk str $($ or $\mu)=5$ H_{1} : Pop mean brk str $($ or $\mu)<5$ $\begin{aligned} & (\pm) \frac{4.95-5}{\frac{0.15}{\sqrt{60}}} \\ & (= \pm 2.582) \end{aligned}$ comp ± 2.326 There is evidence that mean breaking strength is less than it should be Or reject $\mathrm{H}_{0}\left(\mathrm{H}_{0}\right.$ correctly defined $)$	B1 M1 A1 B1 ft	Not just "mean" Allow 60 instead of $\sqrt{ } 60$ Ft their -2.582 (No ft 2 tailed test) Correct comparison shown, no errors seen. Accept area comparison 0.0049 with 0.01 [CR method $(x-5) /(0.15 / \sqrt{ } 60)$ $=-2.326 \mathrm{M} 1 \mathrm{~A} 1$ leading to $x=4.955$ compared to 4.95 and correct conclusion B1ft OR $((x-4.95) / 0.15 / \sqrt{60})$ leading to 4.995 M1 A1 compared to 5 and correct conclusion B1ft]
(iii)	Population not necessarily normal so yes	$\begin{aligned} & \text { B1 } \\ & \text { B1dep [2] } \end{aligned}$	SR B1 For "it" is not necc normal (no mention of population) AND Yes
		Total 7	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	73

6 (i)	$\begin{aligned} & \mathrm{e}^{-3.5} \times \frac{3.5^{3}}{3!} \\ & =0.216(3 \mathrm{sf}) \end{aligned}$	M1 A1 [2]	$\mathrm{P}(X=3)$ any λ
(ii)	$\mathrm{N}(42,42)$ stated or implied $\begin{aligned} & \frac{29.5-42}{\sqrt{42}} \\ & \mathrm{P}\left(z>^{‘}-1.929^{\prime}\right)=\Phi\left({ }^{(} 1.929^{\prime}\right) \\ & =0.973(3 \mathrm{sf}) \end{aligned}$	B1 M1 M1 A1 [4]	Allow with wrong or no cc $\underline{\mathrm{OR}}$ without $\sqrt{ }$ For correct area consistent with their working
(iii)	$\begin{aligned} & (\lambda)=2.4 \\ & 1-\mathrm{e}^{-2.4}\left(1+2.4+\frac{2.4^{2}}{2}+\frac{2.4^{3}}{3!}\right) \\ & =0.221(3 \mathrm{sf}) \end{aligned}$	B1 M1 M1 A1 4	for $1-\mathrm{P}(X \leqslant 3)$, any λ allow one end error Correct expression any λ NB For combination method B1 attempting 10 combinations with $\lambda=1, \lambda=1.4$ M1 6 expressions M1 10 expressions 0.221 A1
		Total 10	
$7 \quad$ (i)	$\begin{aligned} & \frac{3}{4} \int_{0}^{c}\left(c x-x^{2}\right) d x=1 \\ & \left.\frac{3}{4}\left[\frac{c x^{2}}{2}-\frac{x^{3}}{3}\right]\right]_{0}^{c}=1 \\ & \frac{3}{4}\left(\frac{c^{3}}{2}-\frac{c^{3}}{3}\right)=1 \text { or } \frac{3}{4} \times \frac{c^{3}}{6}=1 \text { or } \frac{c^{3}}{8}=1 \\ & (c=2 \mathbf{A G}) \end{aligned}$	M1 A1 A1 [3]	Attempt integ $\mathrm{f}(x)$ and $=1$. Ignore limits Correct integration and limits (condone $\mathrm{c}=2$ No errors seen
(ii)	Inverted parabola Through $(0,0)$ and $(2,0)$ and zero elsewhere Median $=1$	B1 B1 [3]	Must not extend beyond [0,2]
(iii)		M1 A1 B1 A1 [4]	Attempt integ $\mathrm{f}(x)$ ignore limits Correct integration ignore limits Use of correct limits [0,1.5] or 1-[1.5,2]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	73

(iv)	$\left(\frac{27}{32}-\frac{1}{2}\right.$ or $\left.0.844-0.5\right)$		
	$=\frac{11}{32}$ or $0.344(3 \mathrm{sf})$	B1f $\quad[1]$	ft their (iii) For use of symmetry Note If do not use "hence" and start again B1 for cwo
		Total 11	

Total for paper 50

