Page 4	Mark Scheme	Syllabus \bar{s}	Paper
	Cambridge International A Level - May/June 2015	9709	71

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geqq 3 \mathrm{sfs}$, ISW for later rounding. Penalise <3 sfs only once in paper.

1	$\begin{align*} & \frac{1}{2} a^{2}=1 \\ & a=\sqrt{2} \\ & \int_{0}^{\sqrt{2}} x^{2} \mathrm{~d} x \\ & =\left[\frac{x^{3}}{3}\right]_{0}^{\sqrt{2}} \\ & =\frac{(\sqrt{2})^{3}}{3}=\text { or } \frac{2^{1.5}}{3} \text { or } \frac{2.83}{3} \text { or } 0.9428 \tag{5}\\ & (=0.943 \mathbf{A G}) \end{align*}$	M1 A1 M1 A1f A1	$\text { or } \int_{0}^{a} x \mathrm{~d} x=1$ Allow 1.41 or better ignore limits correct integral and limits, but ft their a must see this numerical expression, or equiv SR Equating $\int_{x} \mathrm{f}(x)$ to 0.943 scores M1 Solving to find $a=1.41$ scores A1
		[Total 5]	
2 (i) (ii)	$\mathrm{H}_{0}: p=0.2$ or $\mu=10$ $\mathrm{H}_{1}: p>0.2 \text { or } \mu>10$ $\mathrm{N}(10,8)$ seen or implied $\begin{aligned} & \frac{125-10}{\sqrt{8}} \text { or } \frac{\frac{125}{50}-02}{\sqrt{\frac{0.2 \times 0.8}{50}}} \\ & =0.884 \end{aligned}$ comp 1.282 Claim not justified or No evidence to support claim	B1 [1] B1 M1 A1 M1f Alf [5]	$\text { or } \mathrm{N}\left(0.2, \frac{0.2 \times 0.8}{50}\right)$ For standardising allow with no or wrong cc Allow area comparison with 0.188 or comp 1.645 if $\mathrm{H}_{1} p \neq 0.2$ Allow accept H_{0} provided correctly defined. Follow through their test statistic ; dep 1-tail test No Contradictions SR; Use of $B(50,0.2)$ scores B1 provided at least two probabilities calculated. M1 For finding $\mathrm{P}(X \geqslant 13)$ allow one end error. A1 for 0.186
		[Total: 6]	

Page 5	Mark Scheme	Syllabus \bar{s}	Papē
	Cambridge International A Level - May/June 2015	9709	71

3 (i) (ii)	$\begin{aligned} & 34 \\ & 2.2^{2}+1.3^{2}+2.6^{2}(=13.29) \\ & \frac{33-' 34^{\prime}}{\sqrt{\frac{13.29^{\prime}}{70}}} \\ & \frac{35-' 34^{\prime}}{\sqrt{\frac{13.29)^{\prime}}{70}}} \\ & \Phi\left({ }^{‘} 2.295^{\prime}\right)-\Phi\left({ }^{{f2ca7fab0-543a-46e9-9680-0f6597de2035}} 2.295^{\prime}\right)-\left(1-\Phi\left({ }^{\prime} 2.295\right)\right. \\ & =0.978(3 \mathrm{sf}) \end{aligned}$	M1 M1 M1 A1	Accept 13.3 or 3.65^{2} Allow at early stage correct standardisation method for either For attempt to use tables to find the probability between two z values, may be implied by next line For a correct method to find the area between their two z values
		[Total: 6]	
(ii) (iii)	H_{0} : pop mean $($ or $\mu)=12.4$ H_{1} : pop mean $($ or $\mu)>12.4$ $\frac{12.9-12.4}{2.1+\sqrt{50}}$ 1.684 comp cv $z=1.96$ No evidence that pop mean time has increased Not reject (or accept) that mean time is unchanged (or is 12.4) oe although mean time has increased (or is more than 12.4) oe True (or new) mean	B1 M1 A1 B1f [4] B1 B1 [2] B1 [1]	not just "mean" Allow with 50 instead of $\sqrt{ } 50$ or $\mathrm{P}(z>1.684)=0.0461>0.025$ Allow accept H_{0} if correctly defined. Ft their test statistic. No contradictions
		[Total: 7]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	71

5 (i) (ii) (iii)	$\begin{aligned} & 4200 / 80(=52.5) \\ & =\frac{80}{79}\left(\frac{229000}{80}-{ }^{-} 52.5^{12}\right)(=107.595) \\ & =108(3 \mathrm{sf}) \\ & \\ & 52.5^{\prime} \pm z \sqrt{\frac{107.595 '}{80}} \\ & z=2.326 \\ & 49.8 \text { to } 55.2 \\ & 49 \end{aligned}$	B1 M1 A1 [3] M1 B1 A1f $[3]$ B1 $[1]$	Correct form - must be z-value - allow one side only Seen ft their 52.5 and 107.595 . Must be an interval
		[Total: 7]	
6 (i) (ii) (iii)	$\begin{aligned} & \mathrm{e}^{-\frac{10}{3}} \times \frac{\left(\frac{10}{3}\right)^{2}}{2} \\ & =0.198(3 \mathrm{sf}) \\ & 1-\mathrm{e}^{-2}\left(1+2+\frac{2^{2}}{2}\right) \\ & =0.323(3 \mathrm{sf}) \\ & \mathrm{N}\left(\frac{200}{3}, \frac{200}{3}\right) \\ & \frac{49.5-\frac{200}{3}}{\sqrt{\frac{200}{3}}} \\ & \Phi\left(\left(^{\prime}-2.102^{\prime}\right)=1-\Phi\left({ }^{\prime} 2.102^{\prime}\right)\right. \\ & =0.0178(3 \mathrm{sf}) \end{aligned}$	M1 A1 [2] M1 M1 A1 [3] M1 M1 M1 A1 $[4]$	$\mathrm{P}(2)$, allow any λ M1 allow any λ and/or 1end error Correct expression, correct λ seen or implied For standardising allow either wrong or no cc No sd/var mix For finding area consistent with their working
		[Total: 9]	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	71

$7 \quad$ (i) (ii) (iii)	$\begin{aligned} & 7 \mathrm{E}(X)+5 \mathrm{E}(Y)-2 \\ & (=7 \times 8+5 \times 3)-2 \\ & =69 \\ & \operatorname{Var}(X)=1.6, \operatorname{Var}(Y)=3 \\ & 16 \operatorname{Var}(X)+9 \operatorname{Var}(Y) \\ & (=16 \times 1.6+9 \times 3) \\ & =52.6 \\ & X=10, Y=2 \text { and } X=9, Y=0 \\ & 0.8^{10} \times \mathrm{e}^{-3} \times \frac{3^{2}}{2} \text { or } 10 \times 0.8^{9} \times 0.2 \times \mathrm{e}^{-3} \\ & 0.8^{10} \times \mathrm{e}^{-3} \times \frac{3^{2}}{2}+10 \times 0.8^{9} \times 0.2 \times \mathrm{e}^{-3} \\ & =0.0374 / 5 \end{aligned}$	M1 A1 [2] B1 M1 M1 A1 $[4]$ B1 M1 M1 A1 $[4]$	allow incorrect means both M1 for mult by 16 and 9 ; allow with ' +3 ' M1 for add without ' +3 '; allow incorrect multipliers both pairs seen or implied or 0.0241 or 0.0134 (3sf) one correct product all correct
		[Total: 10]	

