Page /		Mark Schomo								<u>15 ms 63</u>
Page 4		Mark Scneme Cambridge International AS/A Level – May/ June 2015							9709	Paper 63
		Cann	shage inte			- wiay	/oune	2013	5705	00
1		$z = 1.136$ $1.136 = \frac{195 - \mu}{22}$						\pm 1.136 seen, not \pm 1.14, Standardising, no cc no sq rt, equated to their z not 0 128 or 0 872		
		$\mu = 170$			A1	[3]	Correct answer, nfww			
2	(i)						All values may be decimals or %			
		On time	Kitchen mess	Kitchen not mess	Total	B1		2 probabiliti	ies correct	rect
		Not on time	1/10	1/10	4/5	DI				ileet
		Total	3/5	4/10		B1	[3]	2 further pro	obabilities con	rect
3 8	(ii)	P(not on time given kitchen mess) = $\frac{1/2}{3/5}$			M1		A cond prob fraction seen (using corresponding combined outcomes and total)			
		= 5/6 o.e.				A1	[2]	FT from the <1, 3/5ft<1	ir values, 3sf	or better,
3		$\mu = 300 \times 0.072 = 21.6, \ \sigma^2 = 20.0448$				B1		300×0.072 seen and $300 \times 0.072 \times 0.928$ seen or implied		
		P(x < 18) = P $\left(z < \frac{17.5 - 21.6}{\sqrt{20.0448}}\right)$			M1		$(\sigma = 4.4771)$ ±Standardis sq root	$\sigma^{2} = 20(.0)$ ing, their means	be m/var, with	
		=P(z < -0)	.9157)			1011		Cont corr 1	7.5 OF 18.5	
		= 1 - 0.82 = 0.180	01			M1 A1	[5]	Correct area Answer wrt	ι 1 - Φ 0.180, nfww	
4	(i)	$P(1 W) = 6/9 \times 3/8 + 3/9 \times 6/8$		M1		summing 2 (condone re	two-factor propheter propheter provide the propheter provide the provident of the provident of the provided t	obs ot $\frac{1}{2} \times \frac{1}{2} +$		
		$= \frac{1}{2}$	AG			A1	[2]	Correct answ	wer, fully just	ified
		$OR \frac{{}^{6}C_{1} \times^{3}}{{}^{9}C_{2}}$	C_1			M1		Using comb correct form	inations cons	istent,
		$= \frac{1}{2} AG$				A1		Correct answ	wer, fully just	ified
	(ii)	$P\left(\overline{W}, \overline{W}\right) = 3/9 \times 2/8 = 6/72 \ (1/12)$			B1		Distribution	table with 0,	1,2 only	
		$P(W,W) = 6/9 \times 5/8 = 30/72 (5/12)$ x 0 1 2		B1		P(W,W) or	$P(\overline{W}, \overline{W})$ corr	rect		
		Prob	1/12	1/2	5/12	B1 √*	[3]	P(W,W) + 1	$P\left(\overline{W},\overline{W}\right) = 0.5$	5
	(iii)	E(X) = 16/1	2 (4/3) (1.33	3) isw		B1	[1]	Condone 1(seen, nfww	.3) if correct	working

Page 5	Mark Scheme	Syllabus Paper		
T uge o	Cambridge International AS/A Level	2015 9709 63		
5 (i)	$P(large) = 1 - \Phi\left(\frac{29 - 21.7}{6.5}\right)$ = 1 - \Phi(1.123) = 1 - 0.8692 = 0.1308 $P(0,1) = (0.8692)^{8/} + {}^{8}C_{1}(0.1308)(0.8692)^{7}$ = 0.718	M1 M1 A1 M1 M1 A1	[6]	Standardising no cc no sq rt Correct area $1 - \Phi$ Rounding to 0.13 Any bin term with ${}^{8}C_{x}p^{x}(1-p)^{8-x} = 0$ $Summing bin P(0) + P(1) only with n= 8, oeCorrect ans$
(ii)	$= 1 - (0.8692)^{n} > 0.98$ $(0.8692)^{n} < 0.02$ Least number = 28	M1 M1 A1	[3]	eq/ineq involving their $(0.8692)^n$ or $(0.1308)^n$, 0.02 or 0.98 oe with or without a 1 solving attempt (could be trial and error) – may be implied by their answer correct answer
6 (i)	cf 3.5 4.0 4.5 5.0 nitrogen content	B1 M1 A1	[3]	Uniform axes cf and nitrogen content labelled, at least 0 to 70 and 3.5 to 4.8 seen 5 points plotted correctly on graph paper 3.5 3.8 4.0 4.2 4.5 4.8 0 6 18 41 62 70 All points correct and a reasonable curve (condone 1 missed point) or line segments.
(ii)	70 - their 55 = 15 = 21.4%	M1 A1	[2]	Subt a value > 41 from 70 (or $n/70$, n<29) Correct ans, accept 18.5 – 22
(iii)	median = 4.15	B1	[1]	Accept 4.1< median < 4.2, nfww

Page 6

Mark Scheme Cambridge International AS/A Level – May/June 2015

<u>9709 s15 ms 6</u>3

SyllabusPaper970963

(iv)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 M1 A1	Attempt at freqs, at least 3 correct, ignore labelling Attempt at fd as f/cw only at least 3 correct FT (Accept f/cw \times <i>k</i>) Correct heights seen on graph (plot at 4.8,27 A0) Graph paper must be used
	60 40 20 3.5 4.0 4.5 5.0 nitrogen content	B1 B1 [5]	 (3 correct relative heights implies M1M1) Correct bar ends seen on graph – graph paper used Correct linear scale and labels.
7 (i)	W S D 1 1 3 = $6 \times 4 \times {}^{3}C_{3} = 24$ 1 3 1 = $6 \times {}^{4}C_{3} \times 3 = 72$ 3 1 1 = ${}^{6}C_{3} \times 4 \times 3 = 240$ 1 2 2 = $6 \times {}^{4}C_{2} \times {}^{3}C_{2} = 108$ 2 1 2 = ${}^{6}C_{2} \times 4 \times {}^{3}C_{2} = 180$ 2 2 1 = ${}^{6}C_{2} \times {}^{4}C_{2} \times 3 = 270$ Total = 894	M1 M1 M1 B1 A1 [5]	Listing at least 4 different options Mult 3 (combs) together assume $6 = {}^{6}C_{1}, \Sigma r = 5$ Summing at least 4 different evaluated/unsimplified options >1 At least 3 correct unsimplified options Correct answer
(ii)	${}^{3}P_{2} \times {}^{10}P_{8}$ = 10886400	B1 B1 B1 [3]	³ P ₂ oe seen multiplied either here or in (iii) $k^{10}P_x$ seen or k^yP_8 with no addition, $k \ge 1, y > 8, x < 10$ Correct answer, nfww
(iii)	DSWSWSWSWD or DWSWSWSD D in ${}^{3}P_{2}$ ways = 6 S in ${}^{4}P_{4}$ ways = 24 W in ${}^{6}P_{4}$ = 360 Swap SW in 2 ways Total = 103680 ways	B1 B1 B1 [3]	If ${}^{3}P_{2}$ has not gained credit in (ii) may be awarded ${}^{4}P_{4}$ or ${}^{6}P_{4}$ oe seen multiplied or common in all terms (no division) Mult by 2 (condone 2!) Correct answer, 3sf or better, nfww