Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	62

1	$\begin{aligned} & \mathrm{P}(3,4,5)= \\ & { }^{10} \mathrm{C}_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{7}+{ }^{10} \mathrm{C}_{4}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{6}+{ }^{10} \mathrm{C}_{5}\left(\frac{1}{6}\right)^{5} \\ & \left(\frac{5}{6}\right)^{5} \\ & =0.222 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \\ & \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Bin expression of form ${ }^{10} \mathrm{C}_{x}(p)^{x}(1-p)^{10-x}$ any x any p Correct unsimplified answer accept (0.17, 0.83), (0.16, 0.84), (0.16, 0.83), $(0.17,0.84)$ or more accurate Correct answer
2	mid points $13,30.5,40.5,50.5,73$ $\begin{aligned} & \text { Mean }= \\ & \frac{4 \times 13+24 \times 30.5+38 \times 40.5+34 \times 50.5+20 \times 73}{120} \\ & =\frac{5500}{120}=45.8 \end{aligned}$ $\begin{aligned} & \text { var }= \\ & \begin{aligned} & \frac{4 \times 13^{2}+24 \times 30.5^{2}+38 \times 40.5^{2}+34 \times 50.5^{2}+20 \times 73^{2}}{120} \\ &-(45.8 \ldots)^{2} \\ &=\frac{278620}{120}-45.8 \ldots{ }^{2} \\ &=2321.8333-45.8 \ldots{ }^{2} \\ & \mathrm{sd}=14.9 \end{aligned} \end{aligned}$	A1 M1 A1 5	Attempt at midpoints at least 3 correct Using their midpoints i.e. cw, ucb, $1 / 2 \mathrm{cw}$ and freqs into correct formula must be divided by 120 Correct answer from correct working Evaluating $\frac{\sum f x^{2}}{120}$ - their \bar{x}^{2} must see their 45.8^{2} subtracted allow cw etc Correct answer
3 (i)		$\begin{array}{ll} \mathrm{B} 1 & \\ \mathrm{~B} 1 \stackrel{\wedge}{ } & \\ \mathrm{~B} 1 & \\ \mathrm{~B} 1 & 4 \end{array}$	$\mathrm{LQ}=2.6 \mathrm{med}=3.8-3.85, \mathrm{UQ}=6.4-6.6$ Correct quartiles and median on graph ft linear from 2-10 End whiskers correct not through box Label need seconds and linear 2-10 axis or can have 5 values on boxplot no line provided correct
(ii)	$\begin{aligned} & 1.5 \times \mathrm{IQR}=1.5 \times 3.8=5.7 \\ & \mathrm{LQ}-5.7=-\mathrm{ve}, \mathrm{UQ}+5.7=12.1 \text { i.e. }>10 \end{aligned}$ So no outliers AG	M1 A1 2	Attempt to find $1.5 \times \mathrm{IQR}$ and add to UQ or subt from LQ OR compare $1.5 \times \mathrm{IQR}$ with gap 3.6 between UQ and max 10 Correct conclusion from correct working need both
4 (i)	$\begin{aligned} & 0.3 \times 0.72+0.7 \times x=0.783 \\ & x=0.81 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{3} \end{array}$	Eqn with sum of two 2-factor probs $=0.783$ Correct equation Correct answer

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	62

(ii)	$\begin{aligned} & \mathrm{P}(S \text { given not like })=\frac{P(S \cap N L)}{P(N L)} \\ & \quad=\frac{0.3 \times 0.28}{0.3 \times 0.28+0.7 \times 0.19 \text { or } 1-0.783} \\ & \quad=0.387(12 / 31) \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 4 \end{array}$	0.3×0.28 seen on its own as num or denom of a fraction Attempt at $\mathrm{P}(N L)$ either $\left(0.3 \times p_{1}\right)+$ $\left(0.7 \times p_{2}\right)$ or $1-0.783$ seen anywhere Correct unsimplified $\mathrm{P}(N L)$ as num or denom of a fraction Correct answer
5 (i)	$\begin{aligned} & \mathrm{P}(2 \text { Es } 1 \mathrm{O})=\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times{ }^{3} \mathrm{C}_{2}=\frac{3}{5}(0.6) \\ & \mathrm{OR} \\ & \mathrm{P}(2 \text { Es } 1 \mathrm{O})=\frac{{ }^{3} \mathrm{C}_{2} \times{ }^{2} C_{1}}{{ }^{5} C_{3}}=\frac{6}{10} \\ & =0.6 \\ & \text { OR } \\ & 241,247,261,267,461,467=6 \text { options } \\ & 124126127146147167246247267467 \\ & \text { Prob }=6 / 10 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \\ \text { M1 } & \\ & \\ \text { M1 } & \\ \text { A1 } & \\ & \\ \text { M1 } & \\ \text { M1 } & \\ & \end{array}$	$5 \times 4 \times 3$ seen in denom Mult a prob by ${ }^{3} \mathrm{C}_{2}$ oe Correct answer ${ }^{3} \mathrm{C}_{x}$ or ${ }^{y} \mathrm{C}_{2}$ or ${ }^{2} \mathrm{C}_{1}$ oe seen mult by $k \geqslant 1$ in num ${ }^{5} \mathrm{C}_{3}$ seen in denom Correct answer List at least 3 of $241,247,261,267,461,467$ ${ }^{5} \mathrm{C}_{3}$ or list to get all 10 options in denom see below Correct answer
(ii)	$\begin{array}{llllll}124 & 126 & 127 & 146 & 147 & 167\end{array}$ $\begin{array}{llll}246 & 247 & 267 & 467\end{array}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \mathbf{5} \end{array}$	Attempt at listing with at least 7 correct All correct and no others or all 60 $1,2,4$ only seen in top row Any two correct All correct
6 (a) (i)	$\begin{aligned} & \mathrm{N} * * * * * \mathrm{~B} \\ & \text { Number of ways }=\frac{5!}{3!} \quad=20 \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \mathbf{3} \end{array}$	5 ! Seen in num oe or alone mult by $k \geqslant 1$ 3 ! Seen in denom can be mult by $k \geqslant 1$ Correct final answer
(ii)	$\begin{aligned} & \text { B(AAA)NNS } \\ & \begin{array}{l} \text { Number of ways }=\frac{5!}{2!} \text { or }{ }^{5} \mathrm{P}_{3} \\ \quad=60 \end{array} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{3} \end{array}$	5 ! seen as a num can be mult by $k \geqslant 1$ Dividing by 2 ! Correct final answer
(b)	${ }^{14} \mathrm{C}_{9}$ total options $=2002$ T and M both in ${ }^{12} \mathrm{C}_{7}=792$ Ans $2002-792=1210$ OR Neither in ${ }^{12} \mathrm{C}_{9}=220$ One in ${ }^{12} \mathrm{C}_{8}=495$ Other in ${ }^{12} \mathrm{C}_{8}=495$	$\begin{array}{ll} \text { M1 } & \\ \text { B1 } & \\ \text { A1 } & \mathbf{3} \\ \text { M1 } & \\ \text { B1 } & \end{array}$	${ }^{14} \mathrm{C}_{9}$ or ${ }^{14} \mathrm{P}_{9}$ in subtraction attempt ${ }^{12} \mathrm{C}_{7}$ (792) seen Correct final answer Summing 2 or 3 options at least 1 correct condone ${ }^{12} \mathrm{P}_{9}+{ }^{12} \mathrm{P}_{8}+{ }^{12} \mathrm{P}_{8}$ here only Second correct option seen accept another 495 or if M1 not awarded, any correct option

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	$\mathbf{9 7 0 9}$	$\mathbf{6 2}$

	total $=1210$	A1	Correct final answer
$7 \quad$ (a) (i)	$\begin{aligned} & \text { prob }= p\left(z<\frac{30-35.2}{4.7}\right) \\ &=\mathrm{P}(z<-1.106) \\ &=1-0.8655=0.1345 \\ & 0.1345 \times 52=6.99 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ & \\ \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 4 \end{array}$	Standardising no sq rt no cc no sq $1-\Phi$ Correct ans rounding to 0.13 Correct final answer accept 6 or 7 if 6.99 not seen but previous prob 0,1345 correct
(ii)	$\begin{aligned} \Phi(t) & =0.648 \quad z=0.380 \\ 0.380 & =\frac{t-35.2}{4.7} \\ t & =37.0 \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & \mathbf{3} \end{array}$	0.648 seen standardising allow cc, sq rt,sq, need use of tables not $0.148,0.648,0.352,0.852$ correct answer rounding to 37.0
(b)	$\begin{aligned} & \frac{7-\mu=-0.8 \sigma}{\sigma} \text { so } 7-\mu=-0.8 \sigma \\ & \frac{10-\mu}{\sigma}=0.44 \quad \text { so } 10-\mu=0.44 \sigma \\ & \mu=8.94 \quad \sigma=2.42 \end{aligned}$	$\begin{array}{ll} \text { B1 } \\ \text { B1 } \end{array}$	$\begin{aligned} & \pm 0.8 \text { seen } \\ & \pm 0.44 \text { seen } \end{aligned}$ An eqn with z-value, μ and σ no sq rt no cc no sq Sensible attempt to eliminate μ or σ by subst or subtraction, need at least one value Correct answers

