Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	61

1	$\begin{aligned} & \mathrm{P}(x<3.273)=0.5-0.475=0.025 \\ & z=-1.96 \\ & \frac{3.2-\mu}{0.714}=-1.96 \\ & \mu=4.60 \mathrm{~s} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	Attempt to find z-value using tables in reverse $\pm 1.96 \text { seen }$ Solving their standardised equation z-value not nec Correct ans accept 4.6
2 (i)	UQ 5.5-7.0 cm	B1 [1]	
(ii)		M1 A1 B1 B1 [4]	Attempt at fd or scaled freq [fr/cw] Correct heights seen on graph Correct bar widths no gaps Labels (fd and length/cm) and correct bar ends
3 (i)	$\begin{aligned} & \mathrm{P}(A)=\frac{1}{3} \times \frac{2}{3}+\frac{2}{3} \times \frac{1}{3}=\frac{4}{9} \\ & \mathrm{P}(B)=\frac{27}{36}=\frac{3}{4} \\ & \mathrm{P}(A \cap B)=\frac{12}{36}=\frac{1}{3} \\ & \mathrm{P}(A) \times \mathrm{P}(B)=\frac{4}{9} \times \frac{3}{4}=\frac{1}{3} \end{aligned}$ Independent as $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	Sensible attempt at $\mathrm{P}(A)$ Sensible attempt at $\mathrm{P}(B)$ correct $\mathrm{P}(A \cap B)$ Cf $\mathrm{P}(A \cap B)$ with $\mathrm{P}(A) \times \mathrm{P}(B)$ need at least 1 correct Correct conclusion following all correct working
(ii)	Not mutually exclusive because $\mathrm{P}(A \cap B)$ $\neq 0$ Or give counter example e.g. 1 and 6	B1^ ${ }^{\text {[}}$ [1]	ft their $\mathrm{P}(A \cap B)$
4 (i)	$(1-x) 0.9+x \times 0.24=0.801$ $x=0.15$	$\begin{array}{\|c} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 }[3] \end{array}$	Eqn with sum of two 2-factor probs $=0.801$ Correct equation Correct answer

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	61

(ii)	$\begin{aligned} & \mathrm{P}(\geqslant 100 \text { times given } \leqslant 3 \text { views }) \\ & \frac{P(\geqslant 100 \text { times } \cap \geqslant 3 \text { views })}{P(\geqslant 3 \text { views })}= \\ & \frac{0.85 \times 0.1}{0.85 \times 0.1+0.15 \times 0.76 \text { or } 1-0.801} \\ & =0.427 \end{aligned}$	B1 M1 A1 A1 [4]	0.85×0.1 seen on its own as num or denom of a fraction Attempt at $\mathrm{P}(\geqslant 3$ views $)$ either $\left(0.85 \times p_{1}+0.15 \times p_{2}\right)$ or $1-0.801$ seen anywhere Correct unsimplified $\mathrm{P}(\geqslant 3$ views $)$ as num or denom of a fraction Correct answer
5 (i)	$\begin{aligned} \text { new mean } & =\frac{9 \times 7.1+18 \times 5.2}{27} \\ & =5.83 \end{aligned}$		Mult by 9 and 18 and dividing by 27 correct answer
(ii)	$\begin{aligned} & 1.45^{2}=\text { so } \frac{\sum x_{t}^{2}}{9}=472.6125 \mathrm{~mm} \\ & 0.96^{2}=\frac{\sum x_{g}^{2}}{18}-5.2^{2} \text { so } \\ & \sum x_{g}^{2}=503.3088 \\ & \frac{\mathrm{New} \mathrm{sd}^{2}}{472.6 \ldots{ }^{2}+503.3 \ldots{ }^{2}} \\ & 27 \end{aligned}-5.83 \ldots{ }^{2}=2.117 .$ New sd $=1.46$	M1 A1 A1 M1 A1 [5]	subst in a correct variance formula sq rt or not correct Σx_{t}^{2} (rounding to 470) correct $\Sigma x_{g}{ }^{2}$ (rounding to 500) using $\Sigma x_{t}^{2}+\Sigma x_{g}{ }^{2}$, dividing by 27 and subt comb mean ${ }^{2}$ correct answer
6 (i)	$\begin{aligned} & \mathrm{P}(5,6,7)={ }^{8} \mathrm{C}_{5}(0.68)^{5}(0.32)^{3}+ \\ & { }^{8} \mathrm{C}_{6}(0.68)^{6}(0.32)^{2}+{ }^{8} \mathrm{C}_{7}(0.68)^{7}(0.32) \\ & =0.722 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \quad[4] \end{gathered}$	Binomial term ${ }^{8} \mathrm{C}_{x} p^{x}(1-p)^{8-x}$ seen $0<p<1$ Summing 3 binomial terms Correct unsimplified answer Correct answer
(ii)	$n p=340, n p q=108.8$ $\mathrm{P}(x>337)=\mathrm{P}\left(z>\frac{337.5-340}{\sqrt{108.8}}\right)$ $\begin{aligned} & =\mathrm{P}(z>-0.2396) \\ & =0.595 \end{aligned}$	B1 M1 M1 M1 A1 [5]	Correct (unsimplified) mean and var standardising with sq rt must have used 500 cc either 337.5 or 336.5 correct area (>0.5) must have used 500 correct answer
(iii)	$n p(340)>5$ and $n q(160)>5$	B1 [1]	must have both or at least the smaller, need numerical justification
7 (a) (i)	$\begin{aligned} & \frac{9!}{2!2!3!} \quad=15120 \text { ways } \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 }[2] \end{gathered}$	Dividing by $2!2!3!$ Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	61

(ii)	$\begin{aligned} & * * * * * * * * 3 \text { in } \frac{8!}{2!2!3!}=1680 \text { ways } \\ & * * * * * * * * 7 \text { in } \frac{8!}{2!3!}=3360 \text { ways } \\ & \begin{array}{l} \text { Total even } \\ \quad=15120-1680-3360 \\ =10080 \text { ways } \\ \text { OR } \\ * * * * * * * 2 \text { in } 8!/ 2!3!=3360 \text { ways } \\ * * * * * * * 6 \text { in } 8!/ 2!2!3!=1680 \text { ways } \\ * * * * * * * 8 \text { in } 8!/ 2!2!2!=5040 \text { ways } \\ \text { Total }=10080 \text { ways } \\ \text { OR } \\ " 15120 " \times 6 / 9=10080 \end{array} \end{aligned}$	B1 B1 M1 A1 [4] B1 B1 M1 A1 M2 A2	Correct ways end in 3 Correct ways end in 7 Finding odd and subt from 15120 or their (i) Correct answer One correct way end in even correct way end in another even Summing 2 or 3 ways Correct answer Mult their (i) by $2 / 3$ oe Correct answer
(b)	$\begin{array}{\|lll} \mathrm{T}(3) \mathrm{S}(6) \mathrm{G}(14) & \\ 1 & 1 & 3 \text { in } 3 \times 6 \times 6 \times{ }^{14} \mathrm{C}_{3}=6552 \\ 1 & 3 & 1 \text { in } 3 \times{ }^{6} \mathrm{C}_{3} \times 14=840 \\ 3 & 1 & 1 \text { in } 1 \times 6 \times 14=84 \\ 2 & 2 & 1 \text { in }{ }^{3} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{2} \times 14=630 \\ 2 & 1 & 2 \text { in }{ }^{3} \mathrm{C}_{2} \times 6 \times{ }^{14} \mathrm{C}_{2}=1638 \\ 1 & 2 & 2 \text { in } 3 \times{ }^{6} \mathrm{C}_{2} \times{ }^{14} \mathrm{C}_{2}=4095 \\ & \\ \text { Total ways }=13839(13800) \end{array}$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { B1 } \\ \text { A1 [5] } \end{gathered}$	Mult 3 (combinations) together assume $6={ }^{6} \mathrm{C}_{1}$ etc Listing at least 4 different options Summing at least 4 different options At least 3 correct numerical options Correct answer

