Mark Scheme Cambridge International AS/A Level $P(x < 3.273) = 0.5 - 0.475 = 0.025$ $z = -1.96$ $3.2 - \mu$ 0.714	– May/J M1 A1 M1	SyllabusPaperune 2015970961Attempt to find z-value using tables in reverse ±1.96 seenusing
z = -1.96 $\frac{3.2 - \mu}{0.714} = -1.96$	A1	tables in reverse
$\frac{3.2 - \mu}{0.714} = -1.96$		
	M1	1
1.0		Solving their standardised equation <i>z</i> -value not nec
$\mu = 4.60$ s	A1 [4]	Correct ans accept 4.6
UQ 5.5 – 7.0 cm	B1 [1]	
fd 5.33, 25, 28, 20.7, 6, fd	M1	Attempt at fd or scaled freq [fr/cw]
	A1	Correct heights seen on graph
20 - 15 - 10 -	B1	Correct bar widths no gaps
5	B 1 [4]	Labels (fd and length/cm) and correct bar ends
$P(A) = \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$	M1 M1	Sensible attempt at $P(A)$ Sensible attempt at $P(B)$
$P(B) = \frac{27}{36} = \frac{3}{4}$	B1 M1	correct $P(A \cap B)$ Cf $P(A \cap B)$ with $P(A) \times P(B)$ need at
$P(A \cap B) = \frac{12}{36} = \frac{1}{3}$	A1 [5]	least 1 correct Correct conclusion following all correct working
$P(A) \times P(B) = \frac{4}{9} \times \frac{3}{4} = \frac{1}{3}$		
Independent as $P(A \cap B) = P(A) \times P(B)$		
Not mutually exclusive because $P(A \cap B)$ $\neq 0$ Or give counter example e.g. 1 and 6	B1√ [1]	ft their $P(A \cap B)$
$(1-x)0.9 + x \times 0.24 = 0.801$	M1	Eqn with sum of two 2-factor probs = 0.801
x = 0.15	A1 A1 [3]	Correct equation Correct answer
	fd 30 25 20 15 10 5 0 2 4 6 8 10 length in cm $P(A) = \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$ $P(A) = \frac{12}{36} = \frac{3}{4}$ $P(A \cap B) = \frac{12}{36} = \frac{1}{3}$ $P(A) \times P(B) = \frac{4}{9} \times \frac{3}{4} = \frac{1}{3}$ Independent as $P(A \cap B) = P(A) \times P(B)$ Not mutually exclusive because $P(A \cap B) \neq 0$ Or give counter example e.g. 1 and 6	fd 30 25 20 15 10 5 0 2 4 6 8 10 5 0 2 4 6 8 10 10 5 0 2 4 6 8 10 length in cm R(A) = $\frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$ P(A) = $\frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$ P(B) = $\frac{27}{36} = \frac{3}{4}$ P(A) $\approx P(B) = \frac{12}{36} = \frac{1}{3}$ P(A) $\approx P(B) = \frac{4}{9} \times \frac{3}{4} = \frac{1}{3}$ Independent as P(A \cap B) = P(A) \times P(B) Not mutually exclusive because P(A \cap B) $\neq 0$ Or give counter example e.g. 1 and 6 P(1 - x)0.9 + x \times 0.24 = 0.801 M1 A1

Page 5	Mark Scheme		970 Syllat	9_s15_ms ous Paper
l uge e	Cambridge International AS/A Leve	el – May/J		
(ii)	$P(\ge 100 \text{ times given } \le 3 \text{ views})$ $\frac{P(\ge 100 \text{ times } \cap \ge 3 \text{ views})}{P(\ge 3 \text{ views})} =$ $\frac{0.85 \times 0.1}{0.85 \times 0.1 + 0.15 \times 0.76 \text{ or } 1 - 0.801}$ $= 0.427$	B1 M1 A1 A1 [4]	0.85×0.1 seen on its ow denom of a fraction Attempt at $P(\ge 3 \text{ view})$ $(0.85 \times p_1 + 0.15 \times p_2)$ or seen anywhere Correct unsimplified P(as num or denom of a fin Correct answer	s) either 1 – 0.801 ≥ 3 views)
5 (i)	new mean = $\frac{9 \times 7.1 + 18 \times 5.2}{27}$ $= 5.83$	M1 A1 [2]	Mult by 9 and 18 and di 27 correct answer	ividing by
(ii)	1.45 ² = so $\frac{\sum x_t^2}{9}$ = 472.6125 mm $0.96^2 = \frac{\sum x_g^2}{18} - 5.2^2$ so $\sum x_g^2 = 503.3088$	M1 A1 A1	subst in a correct varian sq rt or not correct Σx_t^2 (rounding to correct Σx_g^2 (rounding t	o 470)
	$\frac{\text{New sd}^2}{472.6^2 + 503.3^2} - 5.83^2 = 2.117$ New sd = 1.46	M1 A1 [5]	using $\Sigma x_t^2 + \Sigma x_g^2$, dividi and subt comb mean ² correct answer	ng by 27
6 (i)	$P(5, 6, 7) = {}^{8}C_{5}(0.68)^{5}(0.32)^{3} + {}^{8}C_{6}(0.68)^{6}(0.32)^{2} + {}^{8}C_{7}(0.68)^{7}(0.32)$ $= 0.722$	M1 M1 A1 A1 [4]	Binomial term ${}^{8}C_{x} p^{x}(1-0Summing 3 binomial teCorrect unsimplified anCorrect answer$	rms
(ii)	$np = 340, npq = 108.8$ $P(x > 337) = P\left(z > \frac{337.5 - 340}{\sqrt{108.8}}\right)$ $= P(z > -0.2396)$ $= 0.595$	B1 M1 M1 M1 A1 [5]	Correct (unsimplified) r var standardising with sq rt used 500 cc either 337.5 or 336.5 correct area (> 0.5) mus 500 correct answer	must have
(iii)	<i>np</i> (340) > 5 and <i>nq</i> (160) > 5	B1 [1]	must have both or at lea smaller, need numerical justification	
7 (a) (i)	$\frac{9!}{2!2!3!}$ = 15120 ways	B1 B1 [2]	Dividing by 2!2!3! Correct answer	

	Cambridge International AS/A Leve	l – May/Ji	une 2015 9709	6
	1	T	I	
(ii)	*******3 in $\frac{8!}{2!2!3!} = 1680$ ways	B1	Correct ways end in 3	
	*******7 in $\frac{8!}{2!3!}$ = 3360 ways	B1	Correct ways end in 7	
	Total even			
	= 15120 - 1680 - 3360	M1	Finding odd and subt from 1512 or their (i)	20
	= 10080 ways OR	A1 [4]	Correct answer	
	*******2 in 8!/2!3! = 3360 ways	B1	One correct way end in even	
	*******6 in 8!/2!2!3! = 1680 ways	B1	correct way end in another ever	1
	********8 in 8!/2!2!2! = 5040ways	M1	Summing 2 or 3 ways	
	Total = 10080 ways OR	A1	Correct answer	
	" 15120 " × $6/9 = 10080$	M2	Mult their (i) by $2/3$ oe	
		A2	Correct answer	
(b)	T(3) S(6) G(14)			
	$1 1 3 \text{ in } 3 \times 6 \times {}^{14}C_3 = 6552$ $1 3 1 \text{ in } 3 \times {}^{6}C_3 \times 14 = 840$	M1	Mult 3 (combinations) together assume $6 = {}^{6}C_{1}$ etc	
	3 1 1 in $1 \times 6 \times 14 = 84$	M1	Listing at least 4 different optio	ns
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Summing at least 4 different	
	2 1 2 in ${}^{3}C_{2} \times 6 \times {}^{14}C_{2} = 1638$		options	
	1 2 2 in $3 \times {}^{6}C_{2} \times {}^{14}C_{2} = 4095$	B1	At least 3 correct numerical options	
	Total ways = 13839 (13800)	A1 [5]	Correct answer	

Mark Scheme

Page 6

97<u>09 s15 ms 6</u>1

Paper

Syllabus