Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	52

1	$\begin{aligned} & F=0.6 \times 3^{2} \times 0.4 \\ & F=2.16 \mathrm{~N} \end{aligned}$ Radial, direction PO	M1 A1 B1	3	Uses $a=\omega^{2} r$ Do not allow direction OP
2 (i)	$\begin{align*} & m g=30(0.8-0.5) / 0.5 \\ & m=1.8 \mathrm{~kg} \tag{AG} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	
(ii)	$\begin{aligned} & \mathrm{EE}=30(1.2-0.5)^{2} /(2 \times 0.5) \\ & 1.8 v^{2} / 2=30(1.2-0.5)^{2} /(2 \times 0.5) \\ & -1.8 \times(1.2-0.5) g \\ & v=1.53 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1	3	$\mathrm{KE} / \mathrm{EE} / \mathrm{PE}$ equation, 3 terms RHS $=2.1$
3 (i)	$d(3+3+4)=3 \times 0.4 \sin 30 \times 2$ $d=0.12 \mathrm{~m}$	M1 A1 A1	3	Taking moments about AC
(ii)	$\begin{aligned} & (3+3+4) \times 0.12=F \times 0.8 \sin 30 \\ & F=3 \end{aligned}$ At hinge, 7 N upwards	M1 A1 $B 1{ }^{\wedge}$	3	Taking moments about A , allow candidate's d Ft 10 - candidate's value (F) (downwards if negative)
$4 \quad$ (i)	$\begin{aligned} & r=0.3 \mathrm{~m} \\ & 0.4 T / 0.5-2(0.4 / 0.5)=6 \\ & T=9.5 \mathrm{~N} \\ & 9.5(0.3 / 0.5)+2(0.3 / 0.5)=6 v^{2} /(0.3 g) \\ & v=1.86 \mathrm{~ms}^{-1} \end{aligned}$	B1 M1 A1 M1 A1	5	Can be implied Resolving vertically for the particle Newton's Second Law radially for P
(ii)	$\begin{aligned} & {[0.4 T / 0.5=6], T=7.5} \\ & 7.5(0.3 / 0.5)=(6 / g) \omega^{2}(0.3) \\ & \omega=5 \mathrm{rad} \mathrm{~s}^{-1} \quad \mathrm{AG} \end{aligned}$	B1 M1 A1	3	Uses tension in $\mathrm{BP}=0$ and resolves vertically Newton's Second Law radially for P
$5 \quad$ (i)	$\mathrm{CP}=0.8$ $\begin{aligned} & T=12 \times(0.8-0.4) / 0.4 \\ & T=12 \mathrm{~N} \end{aligned}$	B1 M1 A1	3	P is the point where the string is attached to the plane Uses $T=\lambda x / l$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	52

(ii)	Moment of T at $\mathrm{B}=0.4 \times 12 \cos 30$ $\begin{aligned} & 0.4 \times 12 \cos 30= \\ & 0.2 W \cos 30-0.2 W \sin 30 \end{aligned}$ $W=56.8 \mathrm{~N}$	B1ヶ M1 A1 A1	4	ft for their T in (i) Moments about B Or RHS $=0.2 \sqrt{2} \cos 75 W$ or $W(0.2-0.2 \tan 30) \cos 30$
6 (i)	$\begin{aligned} & U \cos \theta=18 \cos 30(=9 \sqrt{3}=15.588 . .) \\ & U \sin \theta-2 g=-18 \sin 30 \\ & U^{2}=15.588^{2}+11^{2} \\ & U=19.1 \\ & \theta=35.2 \end{aligned}$	B1 B1 M1 A1 A1	5	$U \sin \theta=11$ Pythagoras or $\tan \theta=11 / 15.588$
(ii)	$\begin{aligned} & X=0.8 V \cos 30 \\ & Y=-0.8 V \sin 30+g 0.8^{2} / 2 \\ & (3.2-0.4 V) /(0.8 V \cos 30)=\tan 60 \\ & V=2 \end{aligned}$ OR working perpendicular to the wall $\begin{aligned} & a=g \cos 60 \\ & 0=0.8 V-g \cos 60(0.8)^{2} / 2 \\ & V=2 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1* } \\ \text { DB1* } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	4	Horizontal displacement Vertical displacement $\text { Or } 0.8 V \cos 30 /(3.2-0.4 V)=\tan 30$ Uses $s=0$
$7 \quad$ (i)	$\begin{aligned} & R=0.2 g-0.4 \times 2 \sin 30 \\ & F_{R}=0.4 \times 2 \cos 30 \\ & \mu=0.433 \\ & 0.2 g=0.4 t \sin 30 \\ & t=10 \end{aligned}$	M1 M1 A1 M1 A1	5	Resolving vertically, 3 terms Use $F=\mu R$ Solves for t when $R=0$
(ii)	$\begin{aligned} & 0.2 \mathrm{~d} v / \mathrm{d} t= \\ & 0.4 t \cos 30-0.433(0.2 g-0.4 t \sin 30) \\ & \mathrm{d} v / \mathrm{d} t=2.165 t-4.33(0) \quad \text { AG } \end{aligned}$	M1 A1 A1	3	Newton's Second Law with both forces $f(t)$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	$\mathbf{9 7 0 9}$	$\mathbf{5 2}$

| (iii) | M1
 $\mathrm{d} v=\int(2.165 t-4.33) \mathrm{d} t$
 $v=2.165 t^{2} / 2-4.33 t(+c)$
 $v=0, t=2[c=4.33]$
 $v=2.165 \times 10^{2} / 2-4.33 \times 10+4.33$
 $v=69.3$ | A 1 | M1 |
| :---: | :--- | :---: | :--- |\quad| Attempts to integrate |
| :--- |

