Page 4	Mark Sch	omo			9709_s	<u>15 ms 43</u> Paper
Faye 4	Cambridge International AS/		May/J	une 2015	9709	Paper 43
					•	
1	$[WD = 500 \times 2.75 \times 40]$	M1		For using WD	= Fs or for usi	ng WD = Pt
	Work done = 55000 J	A1				
		M1		For using Power $P = F_V$	$er = \Delta WD \div \Delta t$	or for using
	Power = $\frac{55000}{40}$ = 1375 W	A1	4			
	or Power = $500 \times 2.75 = 1375$ W					
2 (i)				After <i>B</i> reaches constant speed (no tension and Thus <i>A</i> 's speed is the same as <i>A</i> reaches the pul <i>B</i> reached the f same speed and with speed 3 m	until it reache I the surface is I when <i>B</i> reach <i>A</i> 's speed (3 m ley. Until the I loor, <i>A</i> and <i>B</i> I hence <i>B</i> reac	s the pulley smooth). hes the floor (s^{-1}) when it instant when have the
		B1	1			
(ii)	Loss of $PE = 0.15gh$	B1				
	Gain of KE = $\frac{1}{2}$ (0.35 + 0.15) × 3 ²	B1				
				F	- CDE	
	$1.5h = 0.25 \times 9$	M1		For using loss	= gain of I	KE
	h = 1.5	A1	4			
	Alternative	Method f	or part	(ii)		
(ii)	[0.15g - T = 0.15a and T = 0.35a or 0.15g = (0.35+0.15)a] $\Rightarrow a = \dots$	M1		For applying N and to <i>B</i> or for find <i>a</i>		
	$a = 3 \mathrm{ms}^{-2}$	A1				
	$[3^2 = 0 + 2 \times 3h]$	M1		For using $v^2 = v^2$	$u^2 + 2as$	
	h = 1.5	A1	4			

Ρ	a	ge	9	5

43

9709

	Alternative Method for part (ii)					
(ii)	[0.15g - T = 0.15a and T = 0.35a $\Rightarrow T = \dots$	M1		For applying Newton's second law to A and to B to find T		
	T = 1.05 N	A1				
	$\begin{bmatrix} 0.15gh - \frac{1}{2} \times 0.15 \times 3^2 = 1.05h \end{bmatrix}$ or $\begin{bmatrix} \frac{1}{2} \times 0.35 \times 3^2 = 1.05h \end{bmatrix}$	M1		For using $PE_B \log - KE_B \text{ gain} = WD$ against <i>T</i> or for using $KE_A \text{ gain} = WD$ by <i>T</i>		
	<i>h</i> = 1.5	A1	4			
3		M1		For using $DF = P/v$ and for applying Newton's 2^{nd} law at one or both points		
	$\frac{P}{4.5} - R = 860 \times 4$	A1				
	$\frac{P}{22.5} - R = 860 \times 0.3$	A1				
		M1		For eliminating R to find P or for eliminating P to find R		
	$\frac{P}{4.5} - \frac{P}{22.5} = 860(4 - 0.3) \Rightarrow$ $P = 17900$ or $-4.5R + 22.5R =$ $860(4 \times 4.5 - 0.3 \times 22.5) \Rightarrow$ $R = 537.5$	A1				
	R = 537.5	B1	6	Accept 538		
4	KE loss = $\frac{1}{2} \times 12000(24^2 - 16^2)$	B1				
	PE gain = $12000g \times 25$	B1				
		M1		For using WD by DF = PE gain – KE loss + WD against resistance		

				9709_s15_ms_43				
Page 6		SyllabusPaperune 2015970943						
	Cambridge International AS/A Level – May/June 2015 9709 43							
	WD by DF = 3000000 - 1920000 + 7500×500	A1						
		M1		For using $DF = WD$ by $DF \div 500$				
	Driving force = 4830000÷500 Driving force is 9660 N	A1	6					
	Alternativ	e Metho	d for 4					
4	$[16^2 = 24^2 + 2 \times 500a]$	M1		For using $v^2 = u^2 + 2as$				
	$a = -0.32 \text{ ms}^{-2}$	A1						
	Weight component down hill = $12000g \times 25/500$	B1						
		M1		For using Newton's 2nd law				
	$DF - 7500 - 12000g \times \frac{25}{500} = 12000 \times (-0.32)$	A1						
	Driving force is 9660 N	A1	6					
5 (i)	x-component = $4+8\cos 30^\circ+12\cos 60^\circ$ [= $10+4\sqrt{3}$]	B1		16.928				
	y-component = $8\sin 30^\circ + 12\sin 60^\circ + 16$ [= 20 + 6 $\sqrt{3}$]	B1		30.392				
		M1		For using $R^2 = X^2 + Y^2$ or $\tan \theta = Y \div X$				
	$R = 34.8$ or $\theta = 60.9^{\circ}$ with the 4N force	A1						
	$\theta = 60.9^{\circ}$ with the 4N force or $R = 34.8$	B1	5					
(ii)	<i>R</i> = 34.8	В1√^		ft <i>R</i> from (i)				
	$\theta = 29.1^{\circ}$ with the 16N force	B1√ [^]	2	ft 90 – θ from (i)				

	7	Mady Caba			T		<u>15 ms 43</u>	
Ρ	age 7	Mark Scher Cambridge International AS/A		May/J	une 2015	Syllabus 9709	Paper 43	
J				-	1			
6	(i)		M1		For resolving for	resolving forces down the plane		
		$20 + 5g\sin 10^\circ - F = 0$	A1					
		$R = 5g\cos 10^{\circ}$	B1					
		$[\mu = (20 + 8.6824) \div 49.24]$	M1		For using $\mu = F$	÷R		
		Coefficient of friction is 0.582	A1	5				
	(ii)	$5g\sin 10^{\circ} - 0.582 \times 49.24 = 5a$	M1 A1√		For using Newto ft μ from (i) (μ >			
		$\left[0=2.5^2-2\times 4s\right]$	M1		For using $v^2 = u^2$	+2as		
		Distance is 0.781 m	A1	4				
		Alternative M	lethod fo	or part	(ii)			
	(ii)	PE loss = $5gd\sin 10^{\circ}$	B1					
			M1		For using KE los against friction	ss + PE loss =	= WD	
		$\frac{1}{2} \times 5 \times 2.5^2 + 5gd\sin 10^\circ = 0.582 \times 5gd\cos 10^\circ$	A1√		ft μ ($\mu > 0$)			
		Distance is 0.781 m	A1	4				
7	(i)	[0.0001t(t - 50)(t - 100) = 0 or v(0) = 0, v(50) = 0, v(100) = 0]	M1		Either factorise v or evaluate $v(0)$,	. /		
		v(t) = 0 when $t = 0, 50$ & 100	A1	2				
	(ii)	$[0.0003t^2 - 0.03t + 0.5 = 0]$	M1		For using $a(t) =$	$\frac{\mathrm{d}v}{\mathrm{d}t}$		
		$t^{2} - 100t + 1667 = 0 \Rightarrow$ $t = \left[\frac{1}{2}\left\{100 \pm \sqrt{(100^{2} - 4 \times 1667)}\right\}\right]$	dM1		For solving <i>a</i> (<i>t</i>) =	= 0		

				<u>9709_s15_ms_4</u> 3
Page 8		Syllabus Paper		
	Cambridge International AS/A	une 2015 9709 43		
				1
	a = 0 when $t = 21.1$ and when $t = 78.9$	A1		
	v(21.1) = 4.81	B1		
	v(78.9) = -4.81	B1		
	Convex curve from (0,0) to (50,0) with $v > 0$ and has a maximum point.	B1		
	The curve for $(50, 0)$ to $(100, 0)$ is exactly the same as the first curve positioned by rotating the first curve through 180° about			
	the point $(50, 0)$.	B1	7	
(iii)				
(11)		M1		For integrating $v(t)$ to obtain $s(t)$
	$s(t) = 0.000025t^4 - 0.005t^3 + 0.25t^2 (+ c)$	A1		
	[156.25 - 625 + 625]	M1		For using lower and upper limits of 0 and 50 respectively.
	Greatest distance is 156 m	A1	4	