Page 4	Mark Scheme	Syllabus \bar{s}	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

1	$\begin{aligned} & {[\mathrm{WD}=500 \times 2.75 \times 40]} \\ & \text { Work done }=55000 \mathrm{~J} \end{aligned}$ $\begin{aligned} & \text { Power }=\frac{55000}{40}=1375 \mathrm{~W} \\ & \text { or Power }=500 \times 2.75=1375 \mathrm{~W} \end{aligned}$	M1 A1 M1 A1	4	For using $\mathrm{WD}=F s$ or for using $\mathrm{WD}=P t$ For using Power $=\Delta \mathrm{WD} \div \Delta t$ or for using $P=F v$
2 (i)		B1	1	After B reaches the floor, A continues at constant speed until it reaches the pulley (no tension and the surface is smooth). Thus A 's speed when B reaches the floor is the same as A 's speed $\left(3 \mathrm{~ms}^{-1}\right)$ when it reaches the pulley. Until the instant when B reached the floor, A and B have the same speed and hence B reaches the floor with speed $3 \mathrm{~ms}^{-1}$.
(ii)	Loss of PE $=0.15 \mathrm{gh}$ $\text { Gain of } \mathrm{KE}=\frac{1}{2}(0.35+0.15) \times 3^{2}$ $1.5 h=0.25 \times 9$ $h=1.5$	B1 B1 M1 A1	4	For using loss of PE $=$ gain of KE
Alternative Method for part (ii)				
(ii)	$$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	For applying Newton's second law to A and to B or for using $m_{B} g=\left(m_{A}+m_{B}\right) a$ to find a For using $v^{2}=u^{2}+2 a s$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

Alternative Method for part (ii)

(ii)	$\begin{aligned} & {[0.15 g-T=0.15 a \text { and } T=0.35 a} \\ & \quad \rightarrow T=\ldots . \\ & T=1.05 \mathrm{~N} \end{aligned} \quad \begin{aligned} & {\left[0.15 \mathrm{gh}-\frac{1}{2} \times 0.15 \times 3^{2}=1.05 h\right]} \\ & \text { or } \\ & {\left[\frac{1}{2} \times 0.35 \times 3^{2}=1.05 h\right]} \\ & h=1.5 \end{aligned}$	M1 A1 M1 A1	4	For applying Newton's second law to A and to B to find T For using PE_{B} loss $-\mathrm{KE}_{\mathrm{B}}$ gain $=\mathrm{WD}$ against T or for using KE_{A} gain = WD by T
3	$\begin{aligned} & \frac{P}{4.5}-R=860 \times 4 \\ & \frac{P}{22.5}-R=860 \times 0.3 \\ & \frac{P}{4.5}-\frac{P}{22.5}=860(4-0.3) \rightarrow \\ & \text { or }=17900 \\ & -4.5 R+22.5 R= \\ & 860(4 \times 4.5-0.3 \times 22.5) \quad \rightarrow \\ & R=537.5 \end{aligned}$	M1 A1 A1 M1 A1 B1	6	For using $\mathrm{DF}=P / v$ and for applying Newton's $2^{\text {nd }}$ law at one or both points For eliminating R to find P or for eliminating P to find R Accept 538
4	$\begin{aligned} & \mathrm{KE} \text { loss }=\frac{1}{2} \times 12000\left(24^{2}-16^{2}\right) \\ & \mathrm{PE} \text { gain }=12000 \mathrm{~g} \times 25 \end{aligned}$	B1 B1		
		M1		For using WD by DF = PE gain - KE loss + WD against resistance

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	$\mathbf{4 3}$

	WD by DF $=3000000-1920000+7500 \times 500$ Driving force $=4830000 \div 500$ Driving force is 9660 N	A1 M1 A1	6	For using $\mathrm{DF}=\mathrm{WD}$ by $\mathrm{DF} \div 500$
Alternative Method for 4				
4	$\begin{aligned} & {\left[16^{2}=24^{2}+2 \times 500 a\right]} \\ & a=-0.32 \mathrm{~ms}^{-2} \end{aligned}$ Weight component down hill $=$ $12000 g \times 25 / 500$ $\begin{aligned} & \mathrm{DF}-7500-12000 g \times \frac{25}{500} \\ &= 12000 \times(-0.32) \end{aligned}$ Driving force is 9660 N	M1 A1 B1 M1 A1 A1	6	For using $v^{2}=u^{2}+2 a s$ For using Newton's 2nd law
5 (i)	$\begin{aligned} & x \text {-component }=4+8 \cos 30^{\circ}+12 \cos 60^{\circ} \\ & {[=10+4 \sqrt{ } 3]} \\ & y \text {-component }=8 \sin 30^{\circ}+12 \sin 60^{\circ}+16 \\ & {[=20+6 \sqrt{ } 3]} \end{aligned}$ $R=34.8$ or $\theta=60.9^{\circ}$ with the 4 N force $\theta=60.9^{\circ}$ with the 4 N force or $R=34.8$	B1 B1 M1 A1 B1	5	16.928 30.392 For using $R^{2}=X^{2}+Y^{2}$ or $\tan \theta=Y \div X$
(ii)	$\begin{aligned} & R=34.8 \\ & \theta=29.1^{\circ} \text { with the } 16 \mathrm{~N} \text { force } \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \uparrow \\ & \mathrm{~B} 1 \uparrow \end{aligned}$	2	$\mathrm{ft} R$ from (i) ft $90-\theta$ from (i)

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

6 (i)	$\begin{aligned} & 20+5 g \sin 10^{\circ}-F=0 \\ & R=5 g \cos 10^{\circ} \\ & {[\mu=(20+8.6824) \div 49.24]} \end{aligned}$ Coefficient of friction is 0.582	M1 A1 B1 M1 A1	5	For resolving forces down the plane For using $\mu=F \div R$
(ii)	$\begin{aligned} & 5 g \sin 10^{\circ}-0.582 \times 49.24=5 a \\ & {\left[0=2.5^{2}-2 \times 4 s\right]} \end{aligned}$ Distance is 0.781 m	M1 A1§ M1 A1	4	For using Newton's 2nd law ft μ from (i) $(\mu>0)$ For using $v^{2}=u^{2}+2 a s$

Alternative Method for part (ii)				
(ii)	$\text { PE loss }=5 g d \sin 10^{\circ}$ $\frac{1}{2} \times 5 \times 2.5^{2}+5 g d \sin 10^{\circ}=0.582 \times 5 g d \cos 10^{\circ}$ Distance is 0.781 m	B1 M1 A1§ A1	4	For using KE loss + PE loss $=\mathrm{WD}$ against friction $\mathrm{ft} \mu \quad(\mu>0)$
7 (i)	$\begin{aligned} & {[0.0001 t(t-50)(t-100)=0} \\ & \text { or } v(0)=0, v(50)=0, v(100)=0] \\ & v(t)=0 \text { when } t=0,50 \& 100 \end{aligned}$	M1 A1	2	Either factorise $v(t)$ and solve $v(t)=0$ or evaluate $v(0), v(50)$ and $v(100)$
(ii)	$\left[0.0003 t^{2}-0.03 t+0.5=0\right]$ $\begin{aligned} & t^{2}-100 t+1667=0 \rightarrow \\ & t=\left[\frac{1}{2}\left\{100 \pm \sqrt{\left(100^{2}-4 \times 1667\right)}\right\}\right] \end{aligned}$	M1 dM1		For using $a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}$ For solving $a(t)=0$

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - May/June 2015	9709	43

	$a=0$ when $t=21.1$ and when $t=78.9$ $\begin{aligned} & v(21.1)=4.81 \\ & v(78.9)=-4.81 \end{aligned}$ Convex curve from $(0,0)$ to $(50,0)$ with $v>0$ and has a maximum point. The curve for $(50,0)$ to $(100,0)$ is exactly the same as the first curve positioned by rotating the first curve through 180° about the point $(50,0)$.	A1 B1 B1 B1 B1	7	
(iii)	$\begin{aligned} & s(t)=0.000025 t^{4}-0.005 t^{3}+0.25 t^{2}(+c) \\ & {[156.25-625+625]} \end{aligned}$ Greatest distance is 156 m	M1 A1 M1 A1	4	For integrating $v(t)$ to obtain $s(t)$ For using lower and upper limits of 0 and 50 respectively.

