Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	33

1 Use law for the logarithm of a product, quotient or power
Obtain a correct equation free of logarithms, e.g. $\frac{x+4}{x^{2}}=4$
Solve a 3-term quadratic obtaining at least one root M1
Obtain final answer $x=1.13$ only

2 EITHER: State or imply non-modular inequality $(x-2)^{2}>(2 x-3)^{2}$, or corresponding equation B1 Solve a 3-term quadratic, as in Q1.
Obtain critical value $x=\frac{5}{3}$
State final answer $x<\frac{5}{3}$ only
OR1: State the relevant critical linear inequality $(2-x)>(2 x-3)$, or corresponding equation
Solve inequality or equation for $x \quad$ M1
Obtain critical value $x=\frac{5}{3}$
State final answer $x<\frac{5}{3}$ only
OR2: Make recognisable sketches of $y=2 x-3$ and $y=|x-2|$ on a single diagram B1
Find x-coordinate of the intersection M1
Obtain $x=\frac{5}{3}$
State final answer $x<\frac{5}{3}$ only

3 Use correct $\tan 2 A$ and $\cot A$ formulae to form an equation in $\tan x \quad$ M1
Obtain a correct equation in any form A1
Reduce equation to the form $\tan ^{2} x+6 \tan x-3=0$, or equivalent A1
Solve a three term quadratic in $\tan x$ for x, as in Q1. M1
Obtain answer, e.g. $24.9^{\circ}(24.896) \quad$ A1
Obtain second answer, e.g. 98.8 (98.794) and no others in the given interval A1 [Ignore outside the given interval. Treat answers in radians as a misread.]
Radian answers 0.43452, 1.7243

4 Use correct quotient or product rule
M1
Obtain correct derivative in any form A1
Equate derivative to zero and obtain a horizontal equation M1
Carry out complete method for solving an equation of the form $a \mathrm{e}^{3 x}=b$, or $a \mathrm{e}^{5 x}=b \mathrm{e}^{2 x} \quad$ M1
Obtain $x=\ln 2$, or exact equivalent A1

Obtain $y=\frac{1}{3}$, or exact equivalent

Page 5	Mark Scheme	Syllabus $\overline{\text { Paper }}$	
	Cambridge International A Level - May/June 2015	9709	33

5 (i) State $\frac{\mathrm{d} x}{\mathrm{~d} t}=-4 a \cos ^{3} t \sin t$, or $\frac{\mathrm{d} y}{\mathrm{~d} t}=4 a \sin ^{3} t \cos t$
Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$
Obtain correct expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in a simplified form
(ii) Form the equation of the tangent M1

Obtain a correct equation in any form A1
Obtain the given answer A1
(iii) State the x-coordinate of P or the y-coordinate of Q in any form B1

Obtain the given result correctly

6 (i) Integrate and reach $\pm x \sin x \mp \int \sin x \mathrm{~d} x$
M1*
Obtain integral $x \sin x+\cos x$
Substitute limits correctly, must be seen since AG, and equate result to 0.5
Obtain the given form of the equation
(ii) EITHER: Consider the sign of a relevant expression at $a=1$ and at another relevant value, e.g. $a=1.5 \leqslant \frac{\pi}{2}$

OR: Using limits correctly, consider the sign of $[x \sin x+\cos x]_{0}^{d}-0.5$, or compare the value of $[x \sin x+\cos x]_{0}^{a}$ with 0.5 , for $a=1$ AND for another relevant value, e.g $a=1.5 \leqslant \frac{\pi}{2}$.

Complete the argument, so change of sign, or above and below stated, both with correct calculated values
(iii) Use the iterative formula correctly at least once

Obtain final answer 1.2461
Show sufficient iterations to 6 d.p. to justify 1.2461 to 4 d.p., or show there is a sign change in the interval ($1.24605,1.24615$)

7 (i) Separate variables correctly and integrate one side
Obtain term $2 \sqrt{M}$, or equivalent B1
Obtain term $50 k \sin (0.02 t)$, or equivalent
Evaluate a constant of integration, or use limits $M=100, t=0$ in a solution with terms of the form $a \sqrt{M}$ and $b \sin (0.02 t)$
Obtain correct solution in any form, e.g. $2 \sqrt{M}=50 k \sin (0.02 t)+20 \quad$ A1
(ii) Use values $M=196, t=50$ and calculate k

Obtain answer $k=0.190$
(iii) State an expression for M in terms of t, e.g. $M=(4.75 \sin (0.02 t)+10)^{2} \quad$ M1 (dep*)

State that the least possible number of micro-organisms is 28 or 27.5 or 27.6 (27.5625) A1 $\quad 2$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	33

8 (i) EITHER: Substitute for u in $\frac{\mathrm{i}}{u}$ and multiply numerator and denominator by $1+\mathrm{i} \quad$ M1 Obtain final answer $-\frac{1}{2}+\frac{1}{2} \mathrm{i}$, or equivalent A1
OR: \quad Substitute for u, obtain two equations in x and y and solve for x or for $y \quad$ M1 Obtain final answer $-\frac{1}{2}+\frac{1}{2} \mathrm{i}$, or equivalent
(ii) Show a point representing u in a relatively correct position

B1
Show the bisector of the line segment joining u to the origin B1
Show a circle with centre at the point representing i B1
Show a circle with radius 2 B1
(iii) State argument $-\frac{1}{2} \pi$, or equivalent, e.g. 270°

State or imply the intersection in the first quadrant represents $2+\mathrm{i}$
State argument 0.464, (0.4636)or equivalent, e.g. $26.6^{\circ}(26.5625)$
B1

9 (i) State or imply a correct normal vector to either plane, e.g. $\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}$, or $2 \mathbf{i}+\mathbf{j}+3 \mathbf{k} \quad \mathrm{~B} 1$
Carry out correct process for evaluating the scalar product of two normal vectors M1
Using the correct process for the moduli, divide the scalar product of the two normals by the product of their moduli and evaluate the inverse cosine of the result
Obtain answer 85.9° or 1.50 radians

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	33

(ii) EITHER: Carry out a complete strategy for finding a point on l

M1
Obtain such a point, e.g. $(0,2,1)$
EITHER: State two equations for a direction vector $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ for l,

$$
\begin{align*}
& \text { e.g. } a+3 b-2 c=0 \\
& \text { and } 2 a+b+3 c=0 \tag{A1}
\end{align*}
$$

B1
Solve for one ratio, e.g. $a: b \quad$ M1
Obtain $a: b: c=11:-7:-5$
State a correct answer, e.g. $\mathbf{r}=2 \mathbf{j}+\mathbf{k}+\lambda(11 \mathbf{i}-7 \mathbf{j}-5 \mathbf{k})$
Al^{\wedge}
OR1: Obtain a second point on l, e.g. $\left(\frac{22}{7}, 0,-\frac{3}{7}\right)$
Subtract position vectors and obtain a direction vector for l M1
Obtain $22 \mathbf{i}-14 \mathbf{j}-10 \mathbf{k}$, or equivalent A1
State a correct answer, e.g. $\mathbf{r}=2 \mathbf{j}+\mathbf{k}+\lambda(22 \mathbf{i}-14 \mathbf{j}-10 \mathbf{k}) \quad$ A1 \downarrow
OR2: Attempt to find the vector product of the two normal vectors M1
Obtain two correct components
Obtain $11 \mathbf{i}-7 \mathbf{j}-5 \mathbf{k}$, or equivalent
A1

State a correct answer, e.g. $\mathbf{r}=2 \mathbf{j}+\mathbf{k}+\lambda(11 \mathbf{i}-7 \mathbf{j}-5 \mathbf{k}) \quad$ A1 $\hat{\downarrow}$
OR3: Express one variable in terms of a second M1
Obtain a correct simplified expression, e.g. $x=(22-11 y) / 7 \quad$ A1
Express the same variable in terms of the third M1
Obtain a correct simplified expression, e.g. $x=(11-11 z) / 5 \quad$ A1
Form a vector equation for the line M1
State a correct answer, e.g. $\mathbf{r}=2 \mathbf{j}+\mathbf{k}+\lambda\left(\mathbf{i}-\frac{7}{11} \mathbf{j}-\frac{5}{11} \mathbf{k}\right)$
OR4: \quad Express one variable in terms of a second
Obtain a correct simplified expression, e.g. $y=(22-7 x) / 11 \quad$ A1
Express the third variable in terms of the second M1
Obtain a correct simplified expression, e.g. $z=(11-5 x) / 11 \quad$ A1
Form a vector equation for the line M1
State a correct answer, e.g. $\mathbf{r}=2 \mathbf{j}+\mathbf{k}+\lambda\left(\mathbf{i}-\frac{7}{11} \mathbf{j}-\frac{5}{11} \mathbf{k}\right)$
[The \curvearrowright marks are dependent on all M marks being earned.]

10 (i) State or imply $\mathrm{f}(x) \equiv \frac{A}{2 x-1}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}}$
Use a relevant method to determine a constant
Obtain one of the values $A=2, B=-1, C=3$ M1

Obtain the remaining values $\mathrm{A} 1+$
[Apply an analogous scheme to the form $\frac{A}{2 x-1}+\frac{D x+E}{(x+2)^{2}}$; the values being $A=2$,
$D=-1, E=1$.

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9709	33

(ii) Integrate and obtain terms $\frac{1}{2} \cdot 2 \ln (2 x-1)-\ln (x+2)-\frac{3}{x+2} \quad \mathrm{~B} 1 \downarrow+\mathrm{B} 1 \downarrow+\mathrm{B} 1 \downarrow$

Use limits correctly, namely substitution must be seen in at least two of the partial fractions to obtain M1 Integrate all 3 partial fractions and substitute in all three partial fractions for A1 since AG.
Obtain the given answer following full and exact working
[The t marks are dependent on A, B, C etc.]
[SR: If B, C or E omitted, give B 1 M 1 in part (i) and $\mathrm{B} 1^{\wedge}{ }^{\wedge} 1^{\wedge} \mathrm{M} 1$ in part (ii).]
[NB: Candidates who follow the A, D, E scheme in part (i) and then integrate $\frac{-x+1}{(x+2)^{2}}$ by parts should obtain $\frac{1}{2} \cdot 2 \ln (2 x-1)-\ln (x+2)+\frac{x-1}{x+2}$ (the third term is equivalent to $\left.-\frac{3}{x+2}+1\right)$.]

