age 4	Mark Scheme	Syllabus	Pape	r
-g-	Cambridge International A Level – May/June 2015	9709	33	<u> </u>
Use law f	or the logarithm of a product, quotient or power		M1	
	correct equation free of logarithms, e.g. $\frac{x+4}{r^2} = 4$		Al	
	Λ			
	term quadratic obtaining at least one root al answer $x = 1.13$ only		M1 A1	
EITHER:	State or imply non-modular inequality $(x-2)^2 > (2x-3)^2$, or corresp	onding equation	on B1	
	Solve a 3-term quadratic, as in Q1.		M1	
	Obtain critical value $x = \frac{5}{3}$		A1	
	State final answer $x < \frac{5}{3}$ only		A1	
<i>OR</i> 1:	State the relevant critical linear inequality $(2 - x) > (2x - 3)$, or correst	sponding		
	equation Solve inequality or equation for x		B1 M1	
			M1	
	Obtain critical value $x = \frac{5}{3}$		A1	
	State final answer $x < \frac{5}{3}$ only		A1	
<i>OR</i> 2:	Make recognisable sketches of $y = 2x - 3$ and $y = x - 2 $ on a single d	iagram	B1	
	Find <i>x</i> -coordinate of the intersection		M1	
	Obtain $x = \frac{5}{3}$		A1	
	State final answer $x < \frac{5}{3}$ only		A1	
Lizz com	at top 2.4 and act 4 formulas to form an equation in top y		M1	
	ct tan $2A$ and cot A formulae to form an equation in tan x correct equation in any form		M1 A1	
	quation to the form $\tan^2 x + 6\tan x - 3 = 0$, or equivalent		A1	
	aree term quadratic in $\tan x$ for x, as in Q1.		M1	
	swer, e.g. 24.9° (24.896)		A1	
[Ignore of	cond answer, e.g. 98.8 (98.794) and no others in the given interval utside the given interval. Treat answers in radians as a misread.] aswers 0.43452, 1.7243		A1	
	ct quotient or product rule rrect derivative in any form		M1 A1	
	privative to zero and obtain a horizontal equation		M1	
•	complete method for solving an equation of the form $ae^{3x} = b$, or ae^{5x}	$=be^{2x}$	M1	
Obtain r	$=\ln 2$, or exact equivalent		A1	

		Mark Oakara	9709_s		_	
	Page 5	5 Mark Scheme Cambridge International A Level – May/June 2015	Syllabus 9709	Pape 33	r	
		Callibridge international A Level – May/Julie 2015	9709	33		
5	(i)	State $\frac{dx}{dt} = -4a\cos^3 t \sin t$, or $\frac{dy}{dt} = 4a\sin^3 t \cos t$		B1		
		Use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$		M1		
		Obtain correct expression for $\frac{dy}{dx}$ in a simplified form		A1	3	
	(ii)	Form the equation of the tangent		M1		
		Obtain a correct equation in any form		A1		
		Obtain the given answer		A1	3	
	(iii)	State the <i>x</i> -coordinate of <i>P</i> or the <i>y</i> -coordinate of <i>Q</i> in any form		B1		
	(111)	Obtain the given result correctly		B1	2	
6	(i)	Integrate and reach $\pm x \sin x \mp \int \sin x dx$		M1*		
		Obtain integral $x \sin x + \cos x$		A1		
		Substitute limits correctly, must be seen since AG, and equate result to 0.5	M1(0	dep*)		
		Obtain the given form of the equation		A1	4	
	(ii)	<i>EITHER</i> : Consider the sign of a relevant expression at $a = 1$ and at anothe	er relevant value,			
		e.g. $a = 1.5 \le \frac{\pi}{2}$,	M1		
		2		1411		
		<i>OR</i> : Using limits correctly, consider the sign of $[x \sin x + \cos x]_0^a - 0.3$	5, or compare			
		the value of $[x \sin x + \cos x]_0^a$ with 0.5, for $a = 1$ AND for anothe	er relevant value	e,		
		e.g $a = 1.5 \leq \frac{\pi}{2}$.		M1		
		Complete the argument, so change of sign, or above and below stated, both	with correct			
		calculated values		A1	2	
	(iii)	Use the iterative formula correctly at least once		M1		
	()	Obtain final answer 1.2461		A1		
		Show sufficient iterations to 6 d.p. to justify 1.2461 to 4 d.p., or show there	is a sign change			
		in the interval (1.24605, 1.24615)		A1	3	
7	(i)	Separate variables correctly and integrate one side		B1		
		Obtain term $2\sqrt{M}$, or equivalent		B1		
		Obtain term $50k\sin(0.02t)$, or equivalent		B1		
		Evaluate a constant of integration, or use limits $M = 100$, $t = 0$ in a solution	with terms of			
		the form $a\sqrt{M}$ and $b\sin(0.02t)$		M1*		
		Obtain correct solution in any form, e.g. $2\sqrt{M} = 50k \sin(0.02t) + 20$		A1	5	
	(ii)	Use values $M=196$, $t=50$ and calculate k	M1(dep*)		
	(11)	Obtain answer $k = 0.190$		A1	2	
	(iii)	State an expression for <i>M</i> in terms of <i>t</i> , e.g. $M = (4.75\sin(0.02t) + 10)^2$	· · · ·	dep*)	_	
		State that the least possible number of micro-organisms is 28 or 27.5 or 27.	6 (27.5625)	A1	2	

			9709 s	15 ms	33
Page	6	Mark Scheme	Syllabus	Pape	r
		Cambridge International A Level – May/June 2015	9709	33	
3 (i)	EITHER:	Substitute for <i>u</i> in $\frac{i}{u}$ and multiply numerator and denominator by 1	+ i	M1	
		Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent		A1	
	OR:	Substitute for u , obtain two equations in x and y and solve for x or f	or y	M1	
		Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent		A1	2
(ii)	Show a p	oint representing u in a relatively correct position		B1	
()	-	bisector of the line segment joining u to the origin		B1	
	Show a c	ircle with centre at the point representing i		B1	
	Show a c	ircle with radius 2		B1	4
(iii)	State argu	ament $-\frac{1}{2}\pi$, or equivalent, e.g. 270°		B1	
	State or in	mply the intersection in the first quadrant represents $2 + i$		B1	
		ument 0.464, (0.4636)or equivalent, e.g. 26.6° (26.5625)		B1	3
9 (i)	State or in	mply a correct normal vector to either plane, e.g. $\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, or $2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$	j + 3 k	B1	
	Carry out	correct process for evaluating the scalar product of two normal vectors correct process for the moduli, divide the scalar product of the two n	rs	M1	
		ct of their moduli and evaluate the inverse cosine of the result	····· J	M1	
		swer 85.9° or 1.50 radians		A1	4

			9709_s	15 <u>ms</u>	<u>3</u> 3
Page 7	,	Mark Scheme	Syllabus	Pape	r
		Cambridge International A Level – May/June 2015	9709	33	
(ii)	EITHER:	Carry out a complete strategy for finding a point on <i>l</i>		M1	
		Obtain such a point, e.g. $(0, 2, 1)$		A1	
		<i>EITHER</i> : State two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for	or <i>l</i> ,		
		e.g. $a + 3b - 2c = 0$			
		and $2a + b + 3c = 0$		B1	
		Solve for one ratio, e.g. $a:b$		M1	
		Obtain $a: b: c = 11: -7: -5$ State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda(11\mathbf{i} - 7\mathbf{j} - 5\mathbf{k})$		A1 A1√	
				211*	
		<i>OR</i> 1: Obtain a second point on <i>l</i> , e.g. $\left(\frac{22}{7}, 0, -\frac{3}{7}\right)$		B1	
		Subtract position vectors and obtain a direction vector fo	r <i>l</i>	M1	
		Obtain $22\mathbf{i} - 14\mathbf{j} - 10\mathbf{k}$, or equivalent		A1	
		State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda(22\mathbf{i} - 14\mathbf{j} - 10)$	-	A1√	
		<i>OR2</i> : Attempt to find the vector product of the two normal vec	tors	M1	
		Obtain two correct components		A1 A1	
		Obtain $11\mathbf{i} - 7\mathbf{j} - 5\mathbf{k}$, or equivalent State a correct answer $\mathbf{a} = \mathbf{r} - 2\mathbf{i} + \mathbf{k} + 2(11\mathbf{i} - 7\mathbf{i} - 5\mathbf{k})$		A1 A1√ [≜]	
	OR3:	State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda(11\mathbf{i} - 7\mathbf{j} - 5\mathbf{k})$			
	OKS:	Express one variable in terms of a second Obtain a correct simplified expression, e.g. $x = (22 - 11y)/7$		M1 A1	
		Express the same variable in terms of the third		M1	
		Obtain a correct simplified expression, e.g. $x = (11-11z)/5$		Al	
		Form a vector equation for the line M1			
		State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda \left(\mathbf{i} - \frac{7}{11}\mathbf{j} - \frac{5}{11}\mathbf{k}\right)$		A1√ [^]	
	<i>OR</i> 4:	Express one variable in terms of a second		M1	
		Obtain a correct simplified expression, e.g. $y = (22 - 7x)/11$		A1	
		Express the third variable in terms of the second		M1	
		Obtain a correct simplified expression, e.g. $z = (11-5x)/11$		A1	
		Form a vector equation for the line		M1	
		State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda \left(\mathbf{i} - \frac{7}{11}\mathbf{j} - \frac{5}{11}\mathbf{k}\right)$		A1√ [^]	6
		[The $\sqrt[n]{}$ marks are dependent on all M marks being earned.]			
	C () .	A B C		D 1	
10 (i)	State or in	nply $f(x) \equiv \frac{A}{2x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$		B1	
	Use a rele	vant method to determine a constant		M1	
	Obtain on	e of the values $A = 2, B = -1, C = 3$		A1	
		e remaining values A1 +		A1	5
	[Apply an	analogous scheme to the form $\frac{A}{2x-1} + \frac{Dx+E}{(x+2)^2}$; the values being A	= 2,		
	D = -1, E	= 1.]			

		9709 s	<u>315 ms 3</u> :	3
Page 8	Mark Scheme	Syllabus	Paper	
	Cambridge International A Level – May/June 2015	9709	33	

(ii) Integrate and obtain terms $\frac{1}{2} \cdot 2 \ln(2x-1) - \ln(x+2) - \frac{3}{x+2}$ $B1\sqrt[n]{} + B1\sqrt[n]{} + B1\sqrt[n]{}$

Use limits correctly, namely substitution must be seen in at least two of the partial fractions to obtain M1 Integrate all 3 partial fractions and substitute in all three partial fractions for A1 since AG. Obtain the given answer following full and exact working

M1

A1

5

[The t marks are dependent on A, B, C etc.]

[SR: If *B*, *C* or *E* omitted, give B1M1 in part (i) and B1 $\sqrt[6]{B1}$ M1 in part (ii).]

[NB: Candidates who follow the A, D, E scheme in part (i) and then integrate $\frac{-x+1}{(x+2)^2}$

by parts should obtain $\frac{1}{2} \cdot 2 \ln(2x-1) - \ln(x+2) + \frac{x-1}{x+2}$ (the third term is equivalent to $-\frac{3}{x+2} + 1$).]